High-intensity focused ultrasound in functional neurosurgery

Cover Page


Cite item

Full Text

Abstract

Stereotactic functional neurosurgical interventions for basal ganglia are an important method for treating movement, pain, obsessive compulsive and depressive disorders. These interventions include destructive surgeries and deep brain stimulation through implanted electrodes. Destructive surgeries have a number of serious limitations, since they are associated with a higher risk of complications, especially in case of bilateral interventions.
High-intensity focused ultrasound (HIFU) is a novel noninvasive approach proposed for destruction of a certain target point in the brain. We discuss the technical foundations of HIFU, thoroughly analyze the advantages and drawbacks of the method compared to other methods of modern functional neurosurgery, and summarize the first results of using HIFU in the world’s leading clinics. Further accumulation of experience is needed to perform a weighted analysis of the potential of HIFU and to assess the long-term effects of the interventions performed and the role of this procedure in the algorithms for treating various nervous system diseases.

About the authors

Vladimir M. Tyurnikov

Research Center of Neurology

Author for correspondence.
Email: agou@endospine.ru
Russian Federation, Moscow

Artyom O. Gushcha

Research Center of Neurology

Email: agou@endospine.ru
Russian Federation, Moscow

References

  1. Briquard P., Paul Langevin. Ultrasonics. 1972; 10: 213–214. PMID: 4577356.
  2. Lynn J.C., Zwemer R.L., Chick A.J. et al. A new method for the generation and use of focused ultrasound in experimental biology. J. Gen. Physiol. 1942; 26: 179-193. PMID: 19873337 doi: 10.1085/jgp.26.2.179.
  3. Lynn J.C., Putnem T.J. Histological and cerebral lesions prodused by focused ultrasound. Am. J. Pathol. 1944; 20: 637–649. PMID: 19970769.
  4. Fry W.J., Mosbеrg W.H., Barnar J.W., Fry F.J. Production of focal destructive lesions in the central nervous system with ultrasound. J. Neurosurger 1954; 11: 471–478. PMID: 13201985 doi: 10.3171/jns.1954.11.5.0471.
  5. Fry W.J., Meyers R. Ultrasonic method of modifying brain structures. Confin. Neurol. 1962; 22: 315–327. PMID: 13959987 doi: 10.1159/000104377.
  6. Gavrilov L.R., Tsirul’nikov E.M. Fokusirovannyy ul’trazvuk v fiziologii i meditsine [Focused ultrasound in Physiology and medicine]. L. Nauka, 1980; 199p. (in Russ.).
  7. Heimburger R.F. Ultrasound augmentation of central nervous system tumor therapy. Indiana Med. 1985; 78:469–476. PMID: 4020091.
  8. Denier A. Ultrasound and the diencephalon. J. Radiol. Electrol. 1948; 29: 278–279.
  9. Zubiani A. On the application of ultrasound energy to the central nervous system. Mineral Med. 1951; 1:421-436.
  10. Lindstrom P.A. Prefrontal ultrasonic irradiation — A substitute for lobotomy. AMA Arch Neurol. Psychiatry. 1954; 72: 339–425. PMID: 13206465 doi: 10.1001/archneurpsyc.1954.02330040001001.
  11. Clement G.T., White J., Hynenen K. Investigation of a large-area phased array for focused ultrasound surgery through the skull. Physics in medicine and biology. 2000; 45:1071–1083. PMID: 10795992 doi: 10.1088/0031-9155/45/4/319.
  12. Hynenen K., Jolesz F.A. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound in medicine & biology. 1998; 24: 275–283. PMID: 9550186 doi: 10.1016/S0301-5629(97)00269-X.
  13. Hardy C.J., Cline H.E., Watkins R.D. One-dimensional NMR thermal mapping of focused ultrasound surgery. Journal of computer assisted tomography. 1994; 18: 476–483. PMID: 8188919 doi: 10.1097/00004728-199405000-00024.
  14. Hynynen K., Damianou C., Darkazanli A. et al. The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery. Ultrasound Med Biol. 1993; 19 (1): 91–2. PMID: 8456533 doi: 10.1016/0301-5629(93)90022-G.
  15. Ricke V., Butts Pauly K. MR thermometry. Journal of magnetic resonance imaging. 2008; 27:376-390. PMID: 18219673 doi: 10.1002/jmri.21265.
  16. Moser D., Zadicaro E., Schiff G., Jeanmonod D. MR-guided focused ultrasound technique in functional neurosurgery: targeting accuracy. Journal of therapeutic ultrasound. 2013; 1: 3. PMID: 24761224 doi: 10.1186/2050-5736-1-3.
  17. Elias W.J., Huss D., Voss T. et al. A pilot study of focused ultrasound thalamotomy for essential tremor. The New England journal of medicine. 2013; 369: 640–648. PMID: 23944301 doi: 10.1056/NEJMoa1300962.
  18. Chang J.W. Magnetic Resonance Guided Focused Ultrasound Pallidotomy for Parkinson’s Disease. In Current and future applications of focused ultrasound 4th international symposium . Washington D.C. 2014, 29. doi: 10.1186/2050-5736-3-S1-O5.
  19. Chang W.S., Jung H.H., Kweon E.J. et al. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: Practices and clinicoradiological outcomes. J. Neurology Neurosurgery Psychiatry 2015 Mar; 86(3): 257–64. PMID: 24876191 doi: 10.1136/jnnp-2014-307642.
  20. Hariz M.I., Bergenheim A.T. A 10-year follow-up review of patients who under-went Leksell’s posteroventral pallidotomy for Parkinson disease. J Neurosurg. 2001; 94: 552–8. PMID: 11302652 doi: 10.3171/jns.2001.94.4.0552.
  21. Higuchi Y., Matsuda S., Serizawa T. Gamma knife radiosurgery in movement disorders: Indications and limitations. Mov. Disord. 2016. PMID: 27029223 doi: 10.1002/mds.26625.
  22. Witajas T., Carron R., Krack P. et al. A prospective single – blind study of Gamma Knife thalamotomy for tremor. J. Neurology. 2015; 85 (18): 1562–8. PMID: 26446066 DOI: 10. 1212/ WNL.0000000000002087.
  23. Young R.F., Jacques S., Mark R. et al. Gamma knife thalamotomy for treatment of tremor: long-term results. J. Neurosurg. 2000; V. 93. Suppl. 3. P.128-135. PMID: 11143229 doi: 10.3171/jns.2000.93.supplement.
  24. Kleiner-Fisman G., Lozano A., Moro E. et al. Long-term effect of unilateral pallidotomy on levodopa-induced dyskinesia. Mov. Disord., 2010; 25: 1496–8. PMID: 20568091 doi: 10.1002/mds.23155.
  25. Renato P., Munhoz, Antonio Cerasa, et al. Surgical treatment of dyskinesia in Parkinson’s disease. Frontiers in Neurology. 2014; 5: 65. PMID: 24808889 doi: 10.3389/fneur.2014.00065.
  26. Efisio M.C., Rizzi M., Cantonetti L. et al. Pallidotomy for medically refractory status dystonicus in childhood. Dev. Med. Child Neurol. 2014; 56: 649–56. PMID: 24697701 doi: 10.1111/dmcn.12420.
  27. Lumsden D.E., Pallidotomy in the 21st century. Developmental Medicine & Child Neurology. 2014; 56:607-608. PMID: 24716712 doi: 10.1111/dmcn.12414.
  28. Horisawa S., Goto S., Takeda N. et al. Pallidotomy for Writer’s Cramp after Failed Thalamotomy. Stereotact. Funct. Neurosurg. 2016; 94(3): 129–133. PMID: 27172923 doi: 10.1159/000445693.
  29. Strutt A.M., Lai E.C., Jankovic J. et al. Five year follow-up of unilateral posteroventral pallidotomy in Parkinson’s disease. Surg. Neurol. 2009; 71(5):551-558. PMID: 18514283 doi: 10.1016/j.surneu. 2008.03.039.
  30. Gross R.E. What Happened to Posteroventral Pallidotomy for Parkinson’s Disease and Dystonia. Neurotherapeutics. 2008; V. 5, Issue 2, P. 281–293. PMID: 18394570 doi: 10.1016/j.nurt.2008.02.001.
  31. Intemann P.M., Masterman D., Subramanian I. et al. Staged bilateral pallidotomy for treatment of Parkinson disease. J. Neurosurg. 2001; 94:437-444. PMID: 11235949 doi: 10.3171/jns.2001.94.3.0437.
  32. Baron M.S., Vitek J.L., Bakay A.E., DeLong M.R. Treatment of advanced Parkinson’s disease by unilateral posterior GPi pallidotomy 4-year results of pilot study. Mov. Disord. 1998; 13:263. PMID: 10752571 doi: 10.1002/1531-8257(200003)15:2<230::AIDMDS1005>3.0.CO;2-U.
  33. Shabalov V.A. Tomskiy A.A. [Surgical treatment of Parkinson’s disease]. Neyrokhirurgiya [Neurosurgery]. 4: 7–11. (In Russ.).
  34. Nizametdinova D.M., Tyurnikov V.M., Fedorenko I.I. et al. [Microelectrode recording neuronal activity in surgery of Parkinson’s disease]. Annaly klinicheskoy i eksperimental’noy nevrologii [Annals of Clinical and Experimental Neurology.]. 2016; 10 (2): 42–45. (In Russ.).
  35. Young R.F., Jacques S., Mark R. et al. Gamma knife thalamotomy for treatment of tremor: long-term results. J. Neurosurg. 2000; V.93. Suppl. 3. P. 128–135. PMID: 11143229 doi: 10.3171/jns.2000.93.supplement.
  36. Friedman J.H., Fernandez H.H., Sikirica M. et al. Stroke induced by gamma knife pallidotomy: autopsy result. Neurology. 2002; V.58. P.1695-1697. PMID: 12058106 doi: 10.1212/WNL.58.11.1695-a.
  37. Sansur C.A., Frysinger R.S., Pouratian N. et al. Incidence of symptomatic hemorrhage after stereotactic electrode placement. J. Neurosurg. 2007; 107: 998–1003. PMID: 17977273 doi: 10.3171/JNS-07/11/0998.
  38. Alkhani A., Lozano A.M. Pallidotomy for Parkinson disease: a review of contemporary literature. J. Neurosurg. 2001; 94:43-9. PMID: 11147896 doi: 10.3171/jns.2001.94.1.0043.
  39. Palur R.S., Berk C., Schulzer M., Honey C.R. A metaanalysis comparing the results of pallidotomy performed with microelectrode recording or macroelectrode stimulation. J. Neurosurg 2002; 96:1058–62. PMID: 12066907 doi: 10.3171/jns.2002.96.6.1058.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Tyurnikov V.M., Gushcha A.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies