Изменения в нигростриатных образованиях мозга при моделировании паркинсонизма, индуцированного ротеноном (количественное иммуноморфологическое исследование)

D. N. Voronkov1, Yu. V. Dikalova1, R. M. Khudoerkov1, N. G. Yamshchikova1
1ФГБУ «Научный центр неврологии» РАМН (Москва), Россия

Аннотация


Для исследования одного из наиболее распространенных заболеваний нервной системы – паркинсонизма – у крыс Вистар моделировали данное состояние путем длительного введения пестицида ротенона, после чего методами иммуноморфологии и компьютерной морфометрии изучали изменения нейронов и нейроглии в нигростриатных образованиях мозга. Обнаружили, что под влиянием ротенона у животных снижалась двига-
тельная активность и появлялись симптомы экспериментального паркинсонизма, что сопровождалось уменьшением в черной субстанции интенсивности окрашивания на тирозингидроксилазу в отростках нейронов и накоплением α-синуклеина в телах нейронов, а также значимым уменьшением числа дофаминовых нейронов в ростральном отделе черной субстанции. В дорсальном отделе стриатума обоих полушарий мозга ротенон вызывал очаги деструкции, окруженные валом активированных астроцитов. Таким образом, модель паркинсонизма, индуцированного ротеноном, характеризуется дегенеративными изменениями дофаминовых нейронов черной субстанции с отложением в них агрегатов α-синуклеина, локальной и симметричной деструкцией структур стриатума с вовлечением в процесс дофаминергических волокон, нейронов, нейроглии и церебральных сосудов, что, вероятно, является следствием нарушения митохондриального дыхания, вызываемого ротеноном.

Ключевые слова

паркинсонизм; головной мозг; стриатум; черная субстанция; митохондриальные токсины; иммуногистохимия; тирозингидроксилаза; глиофибриллярный кислый астроцитарный белок; α-синуклеин

Полный текст:

PDF

Литература

Степанова М.С., Беляев М.С., Стволинский С.Л. Действие карнозина на крыс при гипоксии, отягощенной 3-нитропропионатом. Нейрохимия 2005; 22: 128–132.

Худоерков Р.М., Воронков Д.Н. Количественная оценка нейронов и нейроглии с помощью компьютерной морфометрии. Бюлл. эксперим. биол. мед. 2010; 1: 109–113.

Alam M., Schmidt W.J. l-DOPA reverses the hypokinetic behavior and rigidity in rotenone-treated rats. Behav. Brain Res. 2004; 153: 439–446.

Bancroft J.D., Gamble M. Theory and Practice of Histological Techniques. 5th ed. London: Churchill Livingstone 2002: 303–320.

Betarbet R., Sherer T.B., MacKenzie G. et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 2000; 3: 1301–1306.

Cicchetti F., Drouin-Ouellet J., Gross R.E. Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol. Sci. 2009; 30: 475–483.

Choi W.-S., Palmiter R.D., Zhengui X. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. Cell Biol. 2011; 192: 873–882.

Choi W.-S., Kruse S.E., Palmiter R.D. et al. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. PNAS 2008; 105: 15136–15141.

Dickson D.W. Parkinson’s Disease and Parkinsonism: Neuropathology. Cold Spring Harb. Perspect. Med. 2012; 2 (8): doi: 10.1101/cshperspect.a009258.

Drolet R.E., Cannon J.R., Montero L. et al. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol. Dis. 2009; 36: 96–102.

Fritsch T., Smyth K.A., Wallendal M.S. et al. Parkinson Disease: Research Update and Clinical Management. South Med. J. 2012; 105: 650–656.

Gorell J.M., Johnson C.C., Rybicki B.A. et al. The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998; 50:1346–1350.

Höglinger G.U., Feger J., Prigent A. et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 2003; 84: 491–502.

Lehmensiek V., Tan E.M., Schwarz J. et al. Expression of mutant alpha-synucleins enhances dopamine transporter-mediated MPP+ toxicity in vitro. Neuroreport 2002; 13: 1279–1283.

Liou H.H., Tsai M.C., Chen C.J. et al. Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology 1997; 48: 1583–1588.

Massano J., Bhatia K.P. Clinical Approach to Parkinson’s Disease: Features, Diagnosis, and Principles of Management. Cold Spring Harb. Perspect. Med. 2012; 2 (6): doi: 10.1101/cshperspect.a008870.

Panickar K.S., Norenberg M.D. Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia. 2005; 50: 287–298.

Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press, 2008.

Radad K., Hassanein K., Moldzio R. et al. Vascular damage mediates neuronal and non-neuronal pathology following short and long-term rotenone administration in Sprague-Dawley rats. Exp. Toxicol. Pathol. 2013; 65: 41–47.

Salvatore M.F., Pruett B.S. Dichotomy of tyrosine hydroxylase and

dopamine regulation between somatodendritic and terminal field areas of

nigrostriatal and mesoaccumbens pathways. PLoS One 2012; 7: e29867.

Schmued L.C., Stowers C.C., Scallet A.C. et al. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 2005; 1035: 24–31.

Sherer T.B., Betarbet R., Kimb J.-H. et al. Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci. Lett. 2000; 341: 87–90.

Sherer T.B., Betarbet R., Testa C.M. et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci. 2003; 23: 10756–10764.

Shigeno T., McCulloch J., Graham D.I. et al. Pure cortical ischemia versus striatal ischemia. Circulatory, metabolic, and neuropathologic consequences. Surg. Neurol 1985; 24: 47–51.

Uversky V.N. Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res. 2004; 318: 225–241.

Watabe M., Nakaki T. Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol. Pharmacol. 2008; 74: 933–940.

Yang W., Chen L., Ding Y. et al. Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice. Hum. Mol. Genet 2007; 16: 2900–2910.

Yoshioka H., Niizuma K., Katsu M. et al. NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. Cerebral Blood Flow Metab. 2011; 31: 868–880.

Zhu C., Vourc’h P., Fernagut P. et al. Variable effects of chronic subcutaneous administration of rotenone on striatal histology. Comp. Neurol. 2004; 478: 418–426.