Нейротрансмиттерная организация и функциональное значение мозжечка

V. P. Barkhatova1
1Научный центр неврологии РАМН (Москва), Россия

Аннотация


В обзоре обобщены современные представления о нейротрансмиттерной организации и функциональном значении мозжечка. Как показали последние исследования, мозжечок участвует в контроле не только двигательных, но и когнитивных функций, аффективных и поведенческих реакций, динамике эмоционально-личностных и психических изменений, а также в регуляции церебрального кровотока и метаболизма. Дальнейшее изучение механизмов взаимодействия и функциональной роли различных нейротрансмиттерных систем мозжечка имеет большое значение для понимания патогенеза и разработки подходов к лечению и профилактике связанных с его патологией двигательных и недвигательных нарушений.

Ключевые слова

мозжечок; функциональное значение; нейротрансмиттеры

Полный текст:

PDF

Литература

Бархатова В.П., Завалишин И.А. Нейротрансмиттерная организация двигательных систем головного и спинного мозга в норме и патологии // Журн. неврол. и психиатрии им. С.С. Корсакова 2004; 8: 77–82.

Бархатова В.П., Карабанов А.В., Иванова-Смоленская И.А. Эссенциальный тремор. Патология нейротрансмиттеров // Неврол. журн. 2007; 2: 4–7.

Калашникова Л.А. Роль мозжечка в организации высших психических функций // Журн. неврол. и психиатрии им. С.С. Корсакова 2001; 4: 55–60.

Калашникова Л.А., Зуева Ю.В., Пугачева О.В., Корсакова Н.К. Когнитивные нарушения при инфарктах мозжечка // Журн. нев- рол. и психиатрии им. С.С. Корсакова (Прилож. «Инсульт») 2004; 11: 20–26.

Adachi K., Rhue B.N., Li M. et al. Thyrotropin-releasing hormone and its receptor in the cerebellum of inferior olive destroyed rat brain. Neurol Res. 2000; 22: 401–403.

Avanzino L., Bove M., Tacchino A. et al. Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. Eur. Y. Neurosci. 2009. Nov. 11 (Epub ahead of print).

Azizis A. …And the olive said to the cerebellum: organization and functional significance of the olive-cerebellar system // Neuroscientist 2007; 13: 616–625.

Baloyannis S.J., Costa V., Deretzi G., Michmizos D. Intraventricular administration of substance P increases the dendritic arborisation and the synaptic surfaces of Purkinje cells in rat s cerebellum. Int. J. Neurosci. 2000; 101: 89–107.

Baumel Y., Jacobson G.A., Cohen D. Implications of functional anatomy on information processing in the deep cerebellar nuclei. Front Cell Neurosci. 2009; 3: 14.

Bloedel J.R., Bracha V. Current concepts of climbing fiber function. Anat. Rec. 1998; 253: 118–126.

Bugalho P., Correa B., Viana-Baptista M. Role of the cerebellum in cognitive and behavioural control: scientific basis and investigation models. Acta Med. Port. 2006; 19: 257–267.

Chida K., Iadecola C., Reis D.J. Global reduction in cerebral blood flow and metabolism elicited from intrinsic of fastigial nucleus. Brain Res. 1989; 50: 177–192.

Cupello A., Robello M. GABA (A) receptor modulation in rat cerebellum granule cells. Receptors Channels. 2000; 7: 151–171.

De Zeeuw C.I., Simpson J.I., Hoogenraad C.C. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998; 21: 391–400.

Deuschi G., Wenzelburger R., Loffler K. et al. Essential tremor and cerebellar dysfunction: clinical and kinematic analysis of intention tremor. Brain 2000; 123: 1568–1580.

Dieudonne S., Dumoulin A. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J.Neurosci. 2000; 20 (5): 1837–1848.

Fuentes C.T., Bastian A.J. «Motor cognition» — what is it and the cerebellum involved? Cerebellum. 2007; 6: 232–236.

Gilerovich E.G. Immunohistochemical studies of the structural bases of inhibition in the central cerebellar nuclei in mice. Neurosci. Behav. Physiol. 2000; 30: 201–206.

Glickstein M., Doron K. Cerebellum: connections and functions. Cerebellum. 2008; 7: 589–594.

Handel B., Their P., Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebrocortical activity. J. Neurosci. 2009; 29: 1526–1533.

Hirai H., Launey T. The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. J. Neurosci. 2000; 20: 5217–5224.

Jacobson G.A., Rokni D., Jarom J. A model of the olive-cerebellar system as a temporal pattern generator. Trends Neurosci. 2008; 31: 617–625.

Kim B.J., Lee S.Y., Kim H.W. et al. Optimized immunohistochemical analysis of cerebellar Purkinje cells using a specific biomarker, calbindin d 28k. Korean J. Physiol. Pharmacol. 2009; 13: 373–378.

Miquel M., Toledo R., Garcia L.I. et al. Why should we keep the cerebellum in mind when thinking about addiction? Curr. Drug. Abuse. Rev. 2009; 2: 26–40.

Murdoch B.E. The cerebellum and language: historical perspective and review. Cortex 2009; Sep. 24 (Epub ahead of print).

Oertel W.H. Distribution of synaptic transmitters in motor centers with reference to spasticity. In: M. Emre, R. Benecke (eds) Spasticity. The current status of research and treatment. NY, 1989; 27–44.

Rajput A.H., Maxod K., Rajput A. Classic essential tremor changes following cerebral hemorrhage. Neurology 2008; 71: 1739–1740.

Reis D.J., Golanov E.V., Galea E., Feinstein D.D. Central neurogenic neuroprotection: central neural system that protect the brain from hypoxia and ischemia. Brain Res. 1998; 785: 279–286.

Sadakane K., Kondo M., Nisimaru N. Direct projection from the cardiovascular control region of the cerebellar cortex, the lateral nodulus uvula, to the brainstem in rabbits. Neurosci. Res. 2000; 36: 15–26.

Safo P.K., Regehr W.G. Endocannabinoids control the induction of cerebellar LTD. Neuron. 2005; 48: 647–659.

Saitow F., Satake S.,Yamada J., Konishi S. Beta-adrenergic receptormediated presynaptic facilitation of ingibitory GABA-ergic transmission at cerebellar interneuron-Purkinje cell synapses. J. Neurophysiol. 2000; 84: 2016–2025.

Salmi J., Pallesen K.J., Neuvonen T. et al. Cognitive and motor loops of the human cerebro-cerebellar system. J. Cogn. Neurosci. 2009. Nov. 19 (Epub a head of print).

Sanchez-Campusano R., Gruart A., Delgado-Garcia J.M. Dynamic associations in the cerebellar-motoneuron network during motor learning. J. Neurosci. 2009; 29: 10750–10763.

Satake S., Saitow F., Yamada J., Konishi S. Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nat. Neurosci. 2000; 3: 551–558.

Schmahmann J.D., Sherman J.C. The cerebellar cognitive affective syndrome. Brain. 1998; 121: 561–579.

Schweighofer N., Ferriol G. Diffusion of nitric oxide can facilitate cerebellar learning: a simulation study. Proc. Natl. Acad. Sci. USA. 2000; 97: 10661–10665.

Shen B., Li H.Z., Wang J.J. Excitatory effects of histamine on cerebellar interpositus nuclear cells of rats through H(2) receptors in vitro. Brain. Res. 2002; 948: 64–71.

Shumway-Cook A., Wollacott M.H. Motor control and practical application. Baltimore, 2001: 83–86.

Sokolov A.A., Gharabaghi A., Tatagiba M.S., Pavlova M. Cerebellar engagement in an action observation network. Cereb Cortex. 2009; Jun. 22 (Epub ahead of print).

Suarez J., Bermudez-Silva F.J., Mackie K. et al. Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J. Comp. Neurol. 2008; 509: 400–421.

Tamagni C., Mondadori C.R., Brugger D. et al. Cerebellum and source memory. Eur. Neurol. 2010; 63: 234–236.

Tian L., Wen Y,Q., Li H.Z. et al. Histamine exites rat cerebellar Purkinje cells via H2 receptors in vitro. Neurosci. Res. 2000; 36: 61–66.

Timmann D., Daum J. Cerebellar contributions to cognitive functions: a progress report two decades of research. Cerebellum. 2007; 6 (3): 159–162.

Ugawa Y. Basic mechanism of magnetic human cerebellar stimulation and its clinica[ application. Rinsho Shinkeigaku. 2009; 49: 621–628.

Voogd J., Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998; 21: 370–375.

Yang G., Huard J.M., Beitz A.J. et al. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J. Neurosci 2000; 20: 6968–6973.

Zheng N., Raman I.M. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum. 2009; Oct. 22 (Epub ahead of print).

Zhu J.N., Yung W.H., Kwok-Chow B. et al. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res. Rev. 2006; 52: 93–106