Влияние генетических факторов на нейрофизиологические механизмы нейродегенеративных заболеваний

N. V. Ponomareva1, V. F. Fokin1, E. I. Rogaev2, S. N. Illarioshkin1
1ФГБНУ «Научный центр неврологии», Москва, Россия; 2ФГБУН Институт общей генетики им. Н.И. Вавилова РАН, Москва, Россия

Аннотация


В обзоре суммированы основные результаты исследований, посвященных влиянию генетических факторов на нейрофизиологические изменения при нейродегенеративных возрастзависимых заболеваниях – болезнях Альцгеймера (БА), Паркинсона (БП) и Гентингтона (БГ). В ряде случаев нейрофизиологические методы дают возможность обнаружить изменения уже на доклинической стадии нейродегенеративного процесса. Такие нейрофизиологические маркёры обладают свойствами эндофенотипов и могут быть использованы для ранней диагностики болезней. Проведенные исследования позволяют выяснить, какие факторы лежат в основе гетерогенности заболеваний не только на молекулярно-генетическом, но и на нейрофизиологическом уровне. В то же время, такой подход показал наличие ряда общих для БА, БП и БГ нейрофизиологических нарушений. Наибольшее значение для развития заболеваний имеют изменения коннективности, включающие межполушарную дезинтеграцию, замедление информационных процессов,снижение торможения, гипервозбудимость и эпилептогенез, а также нарушения нейро-васкулярного сопряжения. С другой стороны, нейрофизиологические изменения могут прямо влиять на развитие болезни, в том числе и на генетическом уровне, о чем свидетельствует данные экспериментальных оптогенетических исследований, результаты глубокой стимуляции мозга и других методов нейромодуляции. Эти данные имеют большое значение для персонализированного подхода к профилактике и лечению возрастзависимых нейродегенеративных заболеваний.

 

Литература

1. Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002; 297 (5580): 353–356. DOI: 10.1126/science.1072994. PMID: 12130773.

2. Иллариошкин С.Н. Конформационные болезни мозга. M.: Янус-K, 2002. 246 с.

3. Иллариошкин С.Н., Клюшников С.А., Селиверстов Ю.A. Болезнь Гентингтона.

M.: АТМО, 2018. 472 p.

4. Пирадов М.А., Супонева Н.А., Селиверстов Ю.А. и др. Возможности современных методов нейровизуализации в изучении спонтанной активности головного мозга в состоянии покоя. Неврологический журнал 2016; 21 (1): 4–12.  DOI 10.18821/1560-9545-2016-21-1-4-12.

5. Фокин В.Ф., Пономарева Н.В. Энергетическая физиология мозга. М.: Антидор, 2003. 288 с.

6. Babiloni C., Del Percio C., Lizio R. et al. Abnormalities of cortical neural synchronization mechanisms in subjects with mild cognitive impairment due to Alzheimer’s and Parkinson’s diseases: an EEG study. J Alzheimers Dis 2017; 59: 339–358. DOI: 10.3233/JAD-160883. PMID:28621693.

7. Ponomareva N.V., Korovaitseva G.I., Rogaev E.I. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol Aging 2008; 29: 819–827. DOI: 10.1016/j.neurobiolaging. 2006.12.019. PMID: 17293007.

8. Ponomareva N., Klyushnikov S., Abramycheva N., Malina D. at al. Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. J Neurol Sci 2014; 344: 114–120. DOI: 10.1016/j.jns.2014.06.035. PMID: 25015843.

9. Yamamoto K., Tanei Z.I., Hashimoto T. et al. Chronic optogenetic activation augments aβ pathology in a mouse model of Alzheimer disease. Cell Rep 2015; 11: 859–865. DOI: 10.1016/j.celrep.2015.04.017. PMID: 25937280.

10. Cole S.R., van der Meij R., Peterson E.J. et al. Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson’s disease. J Neurosci 2017; 37: 4830–4840. DOI: 10.1523/JNEUROSCI.2208-16.2017. PMID: 28416595.

11. Gottesman I.I., Gould T.D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645. DOI: 10.1176/appi.ajp.160.4.636. PMID: 12668349.

12. Пономарева Н.В., Андреева Т.В., Протасова М.А. и др. Генетическая ассоциация гена предрасположенности к болезни Альцгеймера PICALM с показателями когнитивных слуховых вызванных потенциалов при старении. Биохимия 2018; 83 (9): 1075–1082. DOI: 10.1134/S0006297918090092.

13. Яхно Н.Н., Захаров В.В., Локшина А.Б. и др. Деменции. Руководство для врачей. М.: МЕДпресс-информ, 2013. 264 c.

14. Рогаев Е.И. Генетические факторы и полигенная модель болезни Альцгеймера. Генетика 1999; 35 (11): 1558–1571. PMID: 10624576.

15. Saunders A.M., Strittmatter W.J., Schmechel D. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43: 1467–1472. DOI: 10.1212/WNL.43.8.1467. PMID: 8350998.

16. Harold D., Abraham R., Hollingworth P. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009; 41: 1088–1093. DOI: 10.1038/ng.440. PMID: 19734902.

17. Lambert J.C., Heath S., Even G. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009; 41: 1094–1099. DOI: 10.1038/ng.439. PMID: 19734903.

18. Голенкина С.А., Гольцов А.Ю., Кузнецова И.Л. и др. Полиморфизм гена кластерина (CLU/APOJ) при болезни Альцгеймера и в норме в российских популяциях. Молекулярная биология 2010; 44 (4): 620–626. PMID: 20873220.

19. Xu W., Tan L., Yu J.T. The role of PICALM in Alzheimer’s disease. Mol Neurobiol

2015; 52: 399–413. DOI: 10.1007/s12035-014-8878-3. PMID: 25186232.

20. Ishii R., Canuet L., Aoki Y. et al. Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology 2017; 75: 151–-161. DOI: 10.1159/000486870. PMID: 29466802.

21. Imfeld P., Bodmer M., Schuerch M. et al. Seizures in patients with Alzheimer’s disease or vascular dementia: a population-based nested case-control analysis. Epilepsia 2013; 54: 700–707. DOI: 10.1111/epi.12045. PMID: 23215680.

22. Palop J.J., Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 2009; 66: 435–440. DOI: 10.1001/archneurol.2009.15. PMID: 19204149.

23. Ochoa J.F., Alonso J.F., Duque J.E. et al. Precuneus failures in subjects of the PSEN1 E280A family at risk of developing Alzheimer’s disease detected using quantitative elecroencephalography. J Alzheimers Dis 2017; 58: 1229–1244. DOI: 10.3233/JAD-161291. PMID: 28550254.

24. Пономарева Н.В., Фокин В.Ф., Селезнева Н.Д. Церебральная дисфункция у лиц, генетически предрасположенных к болезни Альцгеймера. Вестник РАМН 1999; 1: 16–20. PMID: 10078057.

25. Ponomareva N.V., Andreeva T.V., Protasova M.S. et al. Quantitative EEG during normal aging: association with the Alzheimer’s disease genetic risk variant in PICALM gene. Neurobiol Aging 2017; 51: 177.e1–177.e8. DOI: 10.1016/j. neurobiolaging.2016.12.010. PMID: 28073586.

26. Jin N., Lipponen A., Koivisto H. et al. Increased cortical beta power and spike-wave discharges in middle-aged APP/PS1 mice. Neurobiol Aging 2018; 71: 127–141. DOI: 10.1016/j.neurobiolaging.2018.07.009. PMID: 30138766.

27. Ponomareva N., Andreeva T., Protasova M. et al. Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults. Front Aging Neurosci 2013; 5: 86. DOI: 10.3389/fnagi.2013.00086. PMID: 24379779.

28. Moretti D.V., Prestia A., Fracassi C. et al. Specific EEG changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012: 253153. DOI: 10.1155/2012/253153. PMID: 22506130.

29. Golob E.J., Ringman J.M., Irimajiri R. et al. Cortical event-related potentials in preclinical familial Alzheimer disease. Neurology 2009 17; 73: 1649–1655.  DOI: 10.1212/WNL.0b013e3181c1de77. PMID: 19917987.

30. Braverman E.R., Blum K., Hussman K.L. et al. Evoked potentials and memory/cognition tests validate brain atrophy as measured by 3T MRI (NeuroQuant) in cognitively impaired patients, PLoS One 2015; 10, e0133609. DOI: 10.1371/ journal.pone.0133609. PMID: 26244349.

31. Пономарева Н.В., Андреева Т.А., Протасова М.С. и др. Асимметричная активация мозга при когнитивной нагрузке и ее зависимость от генотипов аполипопротеина е и кластерина, связанных с предрасположенностью к болезни Альцгеймера. В кн.: Функциональная межполушарная асимметрия и пластичность. М., 2012: 156–161.

32. Filippini N., Ebmeier K.P., MacIntosh B.J. et al. Differential effects of the APOE genotype on brain function across the lifespan. Neuroimage 2011; 54: 602–610. DOI: 10.1016/j.neuroimage.2010.08.009. PMID: 20705142.

33. Bakker A., Albert M.S., Krauss G. et al. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. Neuroimage Clin 2015; 7: 688–698. DOI: 10.1016/j.nicl.2015.02.009. PMID: 25844322.

34. Wu J.W., Hussaini S.A., Bastille I.M. et al., Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 2016; 19: 1085–1092. DOI: 10.1038/nn.4328. PMID: 27322420.

35. Zeng X.-S., Geng W.-S., Jia J.-J. et al. Cellular and molecular basis of neurodegeneration

in Parkinson’s disease. Front Aging Neurosci 2018; 10: 109.  DOI:10.3389/fnagi.2018.00109. PMID: 29719505.

36. Zhang X., Gao F., Wang D. et al. Tau pathology in Parkinson’s disease. Front Neurol 2018; 9: 809. DOI: 10.3389/fneur.2018.00809. PMID:30333786.

37. Santos-Reboucas C.B., Goncalves A.P., Dos Santos J.M. et al. rs3851179 polymorphism at 5’ to the PICALM gene is associated with Alzheimer’s and Parkinson’s diseases in Brazilian population. Neuromolecular Med 2017; 19: 293– 299. DOI: 10.1007/s12017-017-8444-z. PMID: 28567584.

38. Stoffers D., Bosboom J.L., Deijen J.B. et al. Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain 2007; 130 (Pt 7): 1847–1860. DOI: 10.1093/brain/awm034. PMID: 17412733.

39. Moll C.K., Buhmann C., Gulberti A. et al. Synchronized cortico-subthalamic beta oscillations in Parkin-associated Parkinson’s disease. Clin Neurophysiol 2015; 126: 2241–2243. DOI: 10.1016/j.clinph.2015.02.008. PMID: 25891422.

40. Caviness J.N., Lue L.F., Hentz J.G. et al. Cortical phosphorylated α-Synuclein levels correlate with brain wave spectra in Parkinson’s disease. Mov Disord. 2016: 1012–1019. DOI: 10.1002/mds.26621. PMID: 27062301.

41. Tahmasian M., Eickhoff S.B., Giehl K. et al. Resting-state functional reorganization in Parkinson’s disease: An activation likelihood estimation meta-analysis. Cortex 2017; 92: 119–138. DOI: 10.1016/j.cortex.2017.03.016. PMID: 28467917.

42. Polito C., Berti V., Ramat S. et al.. Interaction of caudate dopamine depletion and brain metabolic changes with cognitive dysfunction in early Parkinson’s disease Neurobiol Aging 2012; 33: 206.e29–39. DOI: 10.1016/j.neurobiolaging. 2010.09.004. PMID: 20961661.

43. Bekar L.K., Wei H.S., Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J Cereb Blood Flow Metab 2012; 32: 2135–2145. DOI: 10.1038/jcbfm.2012.115. PMID:22872230.

44. Klassen B.T., Hentz J,G., Shill H.A. et al. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 2011; 77: 118–124. DOI:10.1212/WNL.0b013e318224af8d. PMID:21633128.

45. Малина Д.Д., Дикевич Е.А., Федотова Е.Ю., Пономарева Н.В. Альфа-активность ЭЭГ и когнитивные функции у больных с болезнью Паркинсона. В кн.: Современные направления исследований функциональной межполушарной асимметрии и пластичности мозга. М., 2010: 584–587.

46. Polich J. Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol 2007; 118: 2128–2148. PMID: 17573239.

47. Morley J.F., Xie S.X., Hurtig H.I. et al., Genetic influences on cognitive decline in Parkinson’s disease. Mov Disord 2012; 27: 512–518. DOI: 10.1002/ mds.24946. PMID: 22344634.

48. Rittman T., Rubinov M., Vértes P.E. et al. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy. Neurobiol Aging 2016; 48: 153–160. doi: 10.1016/j.neurobiolaging.2016.09.001. PMID: 27697694.

49. Dickson D.W., Heckman M.G., Murray M.E. et al. APOE ε4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology 2018; 91: e1182–e1195. DOI: 10.1212/WNL.0000000000006212. PMID: 30143564.

50. Videnovic A., Golombek D. Circadian dysregulation in Parkinson’s disease. Neurobiol Sleep Circadian Rhythms 2017; 2: 53–58. DOI: 10.1016/j. nbscr.2016.11.001. PMID: 28713867.

51. The Huntington’s disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971–983. DOI:10.1016/0092-8674(93)90585-E. PMID: 8458085.

52. Illarioshkin S.N., Igarashi S., Onodera O. et al. Trinucleotide repeat length and rate of progression of Huntington’s disease. Ann Neurol 1994; 36: 630–635. PMID: 7944295.

53. Nguyen L., Bradshaw J.L., Julie C. et al. Electrophysiological measures as potential biomarkers in Huntington’s disease: review and future directions. Brain Res Rev 2010; 64: 177–194. DOI: 10.1016/j.brainresrev.2010.03.004. PMID: 20381528.

54. Пономарева Н.В, Клюшников С.А., Абрамычева Н.Ю. и др. Изменение нейрофизиологических паттернов активации мозга при когнитивной нагрузке на преклинической стадии болезни Гентингтона. В кн.: Фундаментальные проблемы нейронаук: функциональная межполушарная асимметрия, пластичность, нейродегенерация. М.: Научный мир, 2014: 983–989. (in Russ.)

55. Beste C., Stock A.K., Ness V. et al. A novel cognitive-neurophysiological state biomarker in premanifest Huntington’s disease validated on longitudinal data. Sci Rep 2013; 3: 1797. DOI: 10.1038/srep01797. PMID: 23652721.


Ключевые слова

нейродегенеративные заболевания; генетика; нейрофизиологические механизмы; эндофенотипы

Полный текст:

PDF

Литература

Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297 (5580): 353–356. DOI: 10.1126/science.1072994. PMID: 12130773.

Illarioshkin S.N. Konformatsionniye bolezni mozga [Conformational diseases of the brain]. M.: Janus-K, 2002. 246 p. (in Russ.)

Illarioshkin S.N., Klyushnikov S.A., Seliverstov Yu.A. Bolezn’ Gentingtona [Huntington’s disease]. M.: ATMO, 2018. 472 p. (in Russ.)

Piradov M.A., Suponeva N.A., Seliverstov Yu.A. et al. [The opportunities of modern imaging methods in the study of spontaneous activity of the brain at rest]. Neurological J 2016; 21: 4–12. DOI: 10.18821/1560-9545-2016-21-1-4-12. (in Russ.)

Fokin V.F., Ponomareva N.V. Energeticheskaya fiziologiya mozga [Neuroenergetics and brain physiology]. M. Antidor, 2003. 288 p. (in Russ.)

Babiloni C., Del Percio C., Lizio R. et al. Abnormalities of cortical neural synchronization mechanisms in subjects with mild cognitive impairment due to Alzheimer’s and Parkinson’s diseases: an EEG study. J Alzheimers Dis 2017; 59:339–358. DOI: 10.3233/JAD-160883. PMID:28621693.

Ponomareva N.V., Korovaitseva G.I., Rogaev E.I. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol Aging 2008; 29: 819–827. DOI: 10.1016/j.neurobiolaging. 2006.12.019. PMID: 17293007.

Ponomareva N., Klyushnikov S., Abramycheva N., Malina D. at al. Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. J Neurol Sci 2014; 344: 114–120. DOI: 10.1016/j.jns.2014.06.035. PMID: 25015843.

Yamamoto K., Tanei Z.I., Hashimoto T. et al. Chronic optogenetic activation augments aβ pathology in a mouse model of Alzheimer disease. Cell Rep 2015; 11: 859–865. DOI: 10.1016/j.celrep.2015.04.017. PMID: 25937280.

Cole S.R., van der Meij R., Peterson E.J. et al. Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson’s disease. J Neurosci 2017; 37: 4830–4840. DOI: 10.1523/JNEUROSCI.2208-16.2017. PMID: 28416595.

Gottesman I.I., Gould T.D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645. DOI:10.1176/appi.ajp.160.4.636. PMID: 12668349.

Ponomareva N.V., Andreeva T.V., Protasova M.A. et al. [Genetic association between Alzheimer’s disease risk variant of the PICALM gene and auditory event-related potentials in aging]. Biochemistry (Moscow) 2018; 83 (9): 1075–1082. (in Russ.)

Yakhno N.N., Zakharov V.V., Lokshina A.B. et al. Dementia. A guide for physicians. M.: MEDPress-Inform 2013; 264p. (in Russ.)

Rogaev E.I. Genetic factors and polygenic model of Alzheimer’s disease. Genetica 1999; 35 (11): 1558–1571. PMID: 10624576. (in Russ.)

Saunders A.M., Strittmatter W.J., Schmechel D. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43: 1467–1472. DOI: 10.1212/WNL.43.8.1467. PMID: 8350998.

Harold D., Abraham R., Hollingworth P. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009; 41: 1088–1093. DOI: 10.1038/ng.440. PMID: 19734902.

Lambert J.C., Heath S., Even G. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009; 41: 1094–1099. DOI: 10.1038/ng.439. PMID: 19734903.

Golenkina S.A., Goltsov A.Yu., Kuznetsova I.L. et al. Clusterin gene polymorphism (CLU/APOJ) in Alzheimer’s disease and normal in Russian populations. Mol Biol 2010; 44: 620–626. PMID: 20873220. (in Russ.)

Xu W., Tan L., Yu J.T. The role of PICALM in Alzheimer’s disease. Mol Neurobiol 2015; 52: 399–413. DOI: 10.1007/s12035-014-8878-3. PMID: 25186232.

Ishii R., Canuet L., Aoki Y. et al. Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology 2017; 75: 151–-161. DOI: 10.1159/000486870. PMID: 29466802.

Imfeld P., Bodmer M., Schuerch M. et al. Seizures in patients with Alzheimer’s disease or vascular dementia: a population-based nested case-control analysis. Epilepsia 2013; 54: 700–707. DOI: 10.1111/epi.12045. PMID: 23215680.

Palop J.J., Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 2009; 66: 435–440. DOI: 10.1001/archneurol.2009.15. PMID: 19204149.

Ochoa J.F., Alonso J.F., Duque J.E. et al. Precuneus failures in subjects of the PSEN1 E280A family at risk of developing Alzheimer’s disease detected using quantitative elecroencephalography. J Alzheimers Dis 2017; 58: 1229–1244. DOI:10.3233/JAD-161291. PMID: 28550254.

Ponomareva N.V., Fokin V.F., Selezneva N.D. [Cerebral dysfunction in individuals genetically predisposed to Alzheimer’s disease]. Vest Ross Akad Med Nauk 1999; 1: 16–20. PMID: 10078057. (in Russ.)

Ponomareva N.V., Andreeva T.V., Protasova M.S. et al. Quantitative EEG during normal aging: association with the Alzheimer’s disease genetic risk variant in PICALM gene. Neurobiol Aging 2017; 51: 177.e1–177.e8. DOI: 10.1016/j. neurobiolaging.2016.12.010. PMID: 28073586.

Jin N., Lipponen A., Koivisto H. et al. Increased cortical beta power and spike-wave discharges in middle-aged APP/PS1 mice. Neurobiol Aging 2018; 71: 127–141. DOI: 10.1016/j.neurobiolaging.2018.07.009. PMID: 30138766.

Ponomareva N., Andreeva T., Protasova M. et al. Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults. Front Aging Neurosci 2013; 5: 86. DOI: 10.3389/fnagi.2013.00086. PMID: 24379779.

Moretti D.V., Prestia A., Fracassi C. et al. Specific EEG changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012: 253153. DOI: 10.1155/2012/253153. PMID: 22506130.

Golob E.J., Ringman J.M., Irimajiri R. et al. Cortical event-related potentials in preclinical familial Alzheimer disease. Neurology 2009 17; 73: 1649–1655. DOI: 10.1212/WNL.0b013e3181c1de77. PMID: 19917987.

Braverman E.R., Blum K., Hussman K.L. et al. Evoked potentials and memory/ cognition tests validate brain atrophy as measured by 3T MRI (NeuroQuant) in cognitively impaired patients, PLoS One 2015; 10, e0133609. DOI: 10.1371/ journal.pone.0133609. PMID: 26244349.

Ponomareva N.V., Andreeva Т.А., Protasova М.S. et al. [Asymmetric brain activation in cognitive load and its dependence on genotypes of apolopoprotein E and clusterin related with predisposition to Alzheimer’s disease]. In: [Functional interhemispheric asymmetry and plasticity]. М., 2012: 156–161. (in Russ.)

Filippini N., Ebmeier K.P., MacIntosh B.J. et al. Differential effects of the APOE genotype on brain function across the lifespan. Neuroimage 2011; 54: 602–610. DOI: 10.1016/j.neuroimage.2010.08.009. PMID: 20705142.

Bakker A., Albert M.S., Krauss G. et al. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. Neuroimage Clin 2015; 7: 688–698. DOI: 10.1016/j.nicl.2015.02.009. PMID: 25844322.

Wu J.W., Hussaini S.A., Bastille I.M. et al., Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 2016; 19: 1085–1092. DOI: 10.1038/nn.4328. PMID: 27322420.

Zeng X.-S., Geng W.-S., Jia J.-J. et al. Cellular and molecular basis of neurodegeneration in Parkinson’s disease. Front Aging Neurosci 2018; 10: 109. DOI:10.3389/fnagi.2018.00109. PMID: 29719505.

Zhang X., Gao F., Wang D. et al. Tau pathology in Parkinson’s disease. Front Neurol 2018; 9: 809. DOI: 10.3389/fneur.2018.00809. PMID:30333786.

Santos-Reboucas C.B., Goncalves A.P., Dos Santos J.M. et al. rs3851179 polymorphism at 5’ to the PICALM gene is associated with Alzheimer’s and Parkinson’s diseases in Brazilian population. Neuromolecular Med 2017; 19: 293–299. DOI: 10.1007/s12017-017-8444-z. PMID: 28567584.

Stoffers D., Bosboom J.L., Deijen J.B. et al. Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain 2007; 130 (Pt 7): 1847–1860. DOI: 10.1093/brain/awm034. PMID: 17412733.

Moll C.K., Buhmann C., Gulberti A. et al. Synchronized cortico-subthalamic beta oscillations in Parkin-associated Parkinson’s disease. Clin Neurophysiol 2015; 126: 2241–2243. DOI: 10.1016/j.clinph.2015.02.008. PMID: 25891422.

Caviness J.N., Lue L.F., Hentz J.G. et al. Cortical phosphorylated α-Synuclein levels correlate with brain wave spectra in Parkinson’s disease. Mov Disord. 2016: 1012–1019. DOI: 10.1002/mds.26621. PMID: 27062301.

Tahmasian M., Eickhoff S.B., Giehl K. et al. Resting-state functional reorganization in Parkinson’s disease: An activation likelihood estimation meta-analysis. Cortex 2017; 92: 119–138. DOI: 10.1016/j.cortex.2017.03.016. PMID: 28467917.

Polito C., Berti V., Ramat S. et al.. Interaction of caudate dopamine depletion and brain metabolic changes with cognitive dysfunction in early Parkinson’s disease Neurobiol Aging 2012; 33: 206.e29–39. DOI: 10.1016/j.neurobiolaging. 2010.09.004. PMID: 20961661.

Bekar L.K., Wei H.S., Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J Cereb Blood Flow Metab 2012; 32: 2135–2145. DOI: 10.1038/jcbfm.2012.115. PMID:22872230.

Klassen B.T., Hentz J,G., Shill H.A. et al. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 2011; 77: 118–124. DOI: 10.1212/WNL.0b013e318224af8d. PMID:21633128.

Malina D.D., Dikevich E.A., Fedotova E.Yu., Ponomareva N.V. [Alpha EEG activity and cognitive function in patients with Parkinson’s disease]. In: [Modern areas of research of functional interhemispheric asymmetry and plasticity of the brain] M., 2010: 584–587. (in Russ.)

Polich J. Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol 2007; 118: 2128–2148. PMID: 17573239.

Morley J.F., Xie S.X., Hurtig H.I. et al., Genetic influences on cognitive decline in Parkinson’s disease. Mov Disord 2012; 27: 512–518. DOI: 10.1002/ mds.24946. PMID: 22344634.

Rittman T., Rubinov M., Vértes P.E. et al. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy. Neurobiol Aging 2016; 48:153–160. doi: 10.1016/j.neurobiolaging.2016.09.001. PMID: 27697694.

Dickson D.W., Heckman M.G., Murray M.E. et al. APOE ε4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology 2018; 91: e1182–e1195. DOI: 10.1212/WNL.0000000000006212. PMID: 30143564.

Videnovic A., Golombek D. Circadian dysregulation in Parkinson’s disease. Neurobiol Sleep Circadian Rhythms 2017; 2: 53–58. DOI: 10.1016/j. nbscr.2016.11.001. PMID: 28713867.

The Huntington’s disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971–983. DOI:10.1016/0092- 8674(93)90585-E. PMID: 8458085.

Illarioshkin S.N., Igarashi S., Onodera O. et al. Trinucleotide repeat length and rate of progression of Huntington’s disease. Ann Neurol 1994; 36: 630–635. PMID: 7944295.

Nguyen L., Bradshaw J.L., Julie C. et al. Electrophysiological measures as potential biomarkers in Huntington’s disease: review and future directions. Brain Res Rev 2010; 64: 177–194. DOI: 10.1016/j.brainresrev.2010.03.004. PMID: 20381528.

Ponomareva N.V., Klyushnikov S.A., Abramycheva N.Yu. et al. [Changes in the neurophysiological patterns of brain activation during cognitive load at the preclinical stage of Huntington’s disease]. In: [Fundamental problems of neuroscience: functional hemispheric asymmetry, plasticity, neurodegeneration] M.: Scientific world, 2014: 983–989. (in Russ.)

Beste C., Stock A.K., Ness V. et al. A novel cognitive-neurophysiological state biomarker in premanifest Huntington’s disease validated on longitudinal data. Sci Rep 2013; 3: 1797. DOI: 10.1038/srep01797. PMID: 23652721.




DOI: http://dx.doi.org/10.25692/ACEN.2018.5.6