Perspectives of nanotechnologies in clinical neurology

Cover Page


Cite item

Full Text

Abstract

Nanotechnologies is a new and rapidly developing field of science and engineering related to targeted manipulation of objects sized within the nano-diapason (10–9–10–12 m); this means principally new characteristics and qualities of the respective systems to be constructed. In the paper, problems of nanotechnology applications in clinical neurology are considered, namely, possibilities and prospects of the use, in diagnostic and medicinal purposes, of biochips, nanosensors, bioreactors, immunonanoparticles, biodegradable polymers, convectionenhanced drug delivery, etc. in various diseases of the nervous system. Special attention is paid to the development of pharmacotherapeutic applications, including drug transport systems and targeted nanotherapy, which outlines modern nanomedicine. Different medicinal nanoformulations are discussed, including polymeric nanoparticles, fullerenes, dendrimers, liposomes, nanotubes, etc. The authors’ experience in the study of stable glycosphyngolipid nanotubes and nanoliposomes as the drug delivery system is presented. For this purpose, the model of skin vasomotor reaction stimulation by cutaneous nitroglycerin application was used: the effect of nitroglycerin was shown to rise 1.5 times with nanotubes as carriers, and 2.5 times with nanoliposomes.

 

About the authors

R. D. Seifulla

Research Center of Neurology

Email: snillario@gmail.com
Russian Federation, Moscow

Z. A. Suslina

Research Centre of Neurology

Email: snillario@gmail.com
Russian Federation, Moscow

E. V. Kulykova

Research Center of Neurology

Email: snillario@gmail.com
Russian Federation, Moscow

E. K. Kim

Research Center of Neurology

Email: snillario@gmail.com
Russian Federation, Moscow

A. B. Timofeev

Research Center of Neurology

Email: snillario@gmail.com
Russian Federation, Moscow

Sergey N. Illarioshkin

Research Center of Neurology

Email: snillario@gmail.com
ORCID iD: 0000-0002-2704-6282

D. Sci. (Med.), Prof., Corr. Member of the Russian Academy of Sciences, Deputy Director, Head, Department for brain research

Russian Federation, Moscow

E. A. Rozhkova

Research Center of Neurology

Author for correspondence.
Email: snillario@gmail.com
Russian Federation, Moscow

References

  1. Артюхов И.В., Кеменов В.Н., Нестеров С.Б. Биомедицинские технологии. Обзор состояния и направления работы. В сб.: Мат-лы 99й научн..техн. конф. «Вакуумная наука и техника». М.:
  2. МИЭМ, 2002: 244–247.
  3. Артюхов И.В., Кеменов В.Н., Нестеров С.Б. Нанотехнологии, биология и медицина. В сб.: Мат-лы 99й научн..техн. конф. «Вакуумная наука и техника». М.: МИЭМ, 2002: 248–253.
  4. Арчаков А.И., Таранц И.Н., Макаров О.В. Достижения протеомики в диагностике рака яичников. Акуш. и гинекол. 2005; 5: 12–13.
  5. Воронина Т.А., Середенин С.Б. Ноотропные и нейропротекторные средства. Эксперим. и клин. фармакол. 2007; 2: 12–16.
  6. Евдокимов Ю.М., Захаров М.А., Скуридин С.Г. Нанотехнология на основе нуклеиновых кислот. Вестн. РАН 2006; 2: 112–120.
  7. Завалишин И.А., Бочков Н.П., Суслина З.А. и др. Генная терапия бокового амиотрофического склероза. Бюлл. экспер. биологии и медицины 2008; 4: 467–470.
  8. Захарова И.О., Соколова Т.В., Фураев В.В. и др. Действие индукторов окислительного стресса, нейротоксинов и ганглиозида GM1 на Na+,K++AТФазу в РС12 и на синаптосомы мозга. Журн. эволюц. биохимии и физиол. 2007; 2: 148–154.
  9. Кобаяси Н. Введение в нанотехнологию. М.: Бином, 2007.
  10. Медведева Н.В., Ипатова О.М., Иванов Ю.Д. и др. Нанотехнология и наномедицина. Биол. хим. 2006; 6: 529–546.
  11. Меньшутина Н.В. Введение в нанотехнологию. М.: Изд-во научн. лит-ры, 2006.
  12. Нестеров С.Б. Нанотехнология. Современное состояние и перспективы. В сб.: Новые информационные технологии. Тез. докл. XII Международной студенческой школы-семинара. М.:МГИЭМ, 2004: 21–22.
  13. Пиотровский А.Б., Киселев О.И. Фуллерены в биологии. СПб.: Росток, 2006.
  14. Рудин В.Н., Мелихов И.В., Егоров А.М. и др. Морфологическое разнообразие нанодисперсных форм гидроксиапатита. В сб.: Биотехнология и медицина: материалы конференции. М., 2006: 23.
  15. Рыбалкина М.А. Нанотехнология для всех. М.: Армада, 2005.
  16. Северин Е.С., Родина А.В. Проблемы и перспективы современной противоопухолевой терапии. Успехи биол. химии 2006; 46: 43–64.
  17. Семчиков Ю.Д. Дендримеры – новый класс полимеров. Соросовский образ. журн. 1998; 12: 45–51.
  18. Сейфулла Р.Д., Сергеев П.В., Ульянкина Т.И. Электронная структура, стереохимия и биологическая активность стероидных гормонов. Успехи биол. химии 1975; 16: 193–204.
  19. Середенин С.Б. Лекции по фармакогенетике. М.: МИА, 2004.
  20. Тимофеев А.Б., Мухтаров Э.И., Мухтарова С.Э. и др. Влияние сфинголипидов на механические свойства и проницаемость эпидермиса для воды. Биофизика 2005; 50: 909–913.
  21. Тимофеев А.Б., Тимофеев Г.А., Птицын А.В. и др. Новый метод исследования вазомоций в коже. Мед. техника 2006; 5: 34–36.
  22. Alyautdin R., Gothier D., Petrov V. et al. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 1995; 41: 44–48.
  23. Alyautdin R.N., Petrov V.E., Langer K. et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res. 1997; 14: 325–328.
  24. Alyautdin R.N., Tezikov E.B., Ramge P. et al. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate study. J. Microencapsul. 1998; 15: 67–74.
  25. Basel A.A., Petrov V.E., Trofimov S.S. et al. Antiamnesic activity of nerve growth factor adsorbed on poly(butyl) cyanoacrylate nanoparticles coated with polysorbate-80. Exp. Clin. Pharmacol. 2005; 6: 3–8.
  26. Cassell A.M., Scrivens W.A., Tour J.M. Assembly of DNA/fullerene hybrid materials. Angew. Chem. Intern. Ed. 1998; 37: 1528–1533.
  27. Chen Y., Chen J., Dong J. et al. Comparing study of the effect of nanosized silicon dioxide and microsized silicon dioxide on fibrogenesis in rats. Toxicol. Ind. Health 2004; 20: 21–27.
  28. Darius J., Meyer F.P., Sabel B.A. et al. Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice. J. Pharm. Pharmacol. 2000; 52: 1043–1047.
  29. Dousset V., Ballarino L., Delalande C. et al. Comparison of ultrasmall particles of iron oxide (USIOP))enhanced T2-weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. Am. J. Neuroradiol. 1999; 20: 223–227.
  30. Dugan L.L., Gabrielsen J.K., Yu S.P. et al. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis. 1996; 3: 129–135.
  31. Dunn I.F., Black P.M. The neurosurgeon as local oncologist: cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 2003; 52: 1411–1422.
  32. Feynman R.P. There’s plenty of room at the bottom. In: Engineering and science. California Institute of Technology, 1960: 22–36. (Русск. пер. опубл. в журн.: Химия и жизнь 2002: 12: 21–26).
  33. Fighera M.R., Bonini J.S., Frussa-Filho R. et al. Monosialoganglioside increases catalase activity in cerebral cortex of rats. Free Radic. Res. 2004; 38: 495–500.
  34. Fighera M.R., Bonini J.S., Oliveira T.G. et al. GM1 ganglioside attenuates convulsions and thiobarbituric acid reactive substances production induced by the intrastriatal injection of methylmalonic acid. Int. J. Biochem. Cell Biol. 2003; 35: 465–473.
  35. Fighera M.R., Royes L.F., Furian A.F. et al. GM1 ganglioside prevents seizures, Na+,K++ATPase activity inhibition and oxidative stress induced by glutaric acid and pentylenetetrazole. Neurobiol. Dis. 2006; 22: 611–623.
  36. Friedrich M.J. Nanoscale biosensors show promise. JAMA 2005; 293: 1965–1971.
  37. Friese A., Seiller E., Quack G. et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur. J. Pharm. Biopharm. 2000; 49: 103–109.
  38. Furian A.F., Oliveira M.S., Royes L.F. et al. GM1 ganglioside induces vasodilation and increases catalase content in the brain. Free Radic. Biol. Med. 2007; 43: 924–932.
  39. Gulyaev A.E., Gelperina S.E., Skidan I.N. et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res. 1999; 16: 1564–1569.
  40. Hara A., Kutsukake Y., Uemura K.I. et al. Anticoagulant activity of sulfatide and its anti-thrombotic effect in rabbit. J. Biochem. (Tokyo) 1993; 113: 781–785.
  41. Hoffart V., Lamprecht A., Maincent P. et al. Oral bioavailability of a low molecular weight heparin using a polymeric delivery system. J. Control. Release. 2006; 113: 38–42.
  42. Howe C.D. Nanotechnology: slow revolution. Cambridge, Maryland: Forrester Res. Corp., 2002.
  43. Jang J.S., Kim S.Y., Lee S.B. et al. Poly (ethylene glycol)/poly(epsilon-caprolactone) diblock copolymeric nanoparticles for non-viral gene delivery: the role of charge group and molecular weight in particle formation, cytotoxicity and transfection. J. Control. Release 2006; 113: 173–182.
  44. Jin H., Chen W.Q., Tang X.W. et al. Polyhydroxylated C(60), fullerenols, as glutamate receptor antagonists and neuroprotective agents. J. Neurosci. Res. 2000; 62: 600–607.
  45. Johnston M.J., Semple S.C., Klimuk S.K. et al. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim. Biophys. Acta 2007; 1768: 1121–1127.
  46. Kateb B., Van Handel M., Zhang L. et al. Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage 2007; 37 (Suppl. 1): S9–S17.
  47. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 2001; 47: 65–81.
  48. Kreuter J., Alyautdin R.N., Kharkevich D.A. et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995; 674: 171–174.
  49. Kreuter J., Petrov V.E., Kharkevich D.A. et al. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles. J. Control. Release 1997; 49: 81–87.
  50. Kreuter J., Shamenkov D., Petrov V. et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target 2002; 10: 317–325.
  51. Leary S.P., Liu C.Y., Apuzzo M.L. Toward the emergence of nanoneurosurgery: part III – nanomedicine: targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery 2006; 58: 1009–1026.
  52. Malcolm B., Barnes Jr., Sawatari C. et al. Polymer manipulation and nanofabrication in real time using transmission electron microscopy. Biomacromolecules 2007; 8: 70–76.
  53. Maureen R. Nanoparticles: health effects-pros and cons. Environ. Health Perspect. 2006; 114: 1818–1825.
  54. Mihailova N.A., Kaplun A.P., Muhtarov E.I. et al. Nanostructures based on glycosphingolipids as the effective bioactive components delivery system. In: XI Intern. Conf. «Cosmetic products and row materials: safety end efficacy». Moscow, 2006.
  55. Mitsutoshi S., Takayanagi I. Pharmacological studies on fullerene (C60), a novel carbon allotrope, and its derivatives. J. Pharmacol. Sci. 2006; 100: 513–518.
  56. Moghimi M., Hunter A.C., Murray J.C. Nanomedicine: current status and future prospects. FASEB J. 2005; 19: 311–330.
  57. Oberdorster G., Oberdorster E., Oberdorster J. Nano-toxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005; 113: 823–839.
  58. Oberdorster G., Sharp Z., Atudorei V. et al. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004; 16: 437–445.
  59. Okuyama K. Preparation of nanoparticles via spray route. In: Chemical engineering science (ed. K. Okuyama, I.W. Lenggoro). 2003; 58: 537–547.
  60. Olivier J..C. Drug transport to brain with targeted nanoparticles. NeuroRx. 2005; 2: 108–119.
  61. Owens D.E., Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006; 307: 93–102.
  62. Pakowski Z. Drying of nanoporous and nanostructured materials. In: Proc. of the 14th Int. Drying Symp. S.Paulo, 2004: 69–88.
  63. Pandey R., Ahmad Z., Sharma S. et al. Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int. J. Pharm. 2005; 301: 268–276.
  64. Pandey R., Khuller G.K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J. Antimicrob. Chemother. 2006; 57: 1146–1152.
  65. Pastorino F., Brignole C., Di Paolo D. et al. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res. 2006; 66:10073–10082.
  66. Ettinger R. The prospect of immortality. NY: Doubleday, 1964. (Русск. пер.: Эттингер Р. Перспективы бессмертия. М.: Научный мир, 2003).
  67. Rogacki G. The effect of supercritical CO2 drying on parenchyma. In: Proc. of the 11th Polish Drying Symp. Poznan, 2005: 98–112.
  68. Roney C., Kulkarni P., Arora V. et al. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J. Control. Release 2005; 108: 193–214.
  69. Sarmento B., Ribeiro A., Veiga F. et al. Alginate/Chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007; 24: 2198–2206.
  70. Schultz S., Smith D.R., Mock J.J. et al. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA 2000; 97: 996–1001.
  71. Shadrina M., Nikopensius T., Slominsky P. et al. Association study of sporadic Parkinson’s disease genetic risk factors in patients from Russia by APEX technology. Neurosci. Lett. 2006; 405: 212–216.
  72. Shao K., Hou Q., Duan W. et al. Intracellular drug delivery by sulfatide-mediated liposomes to gliomas. J. Control. Release 2006; 115: 150–157.
  73. Shao K., Hou Q., Go M.L. et al. Sulfatide-tenascin interaction mediates binding to the extracellular matrix and endocytic uptake of liposomes in glioma cells. Cell Mol. Life Sci. 2007; 64: 506–515.
  74. Shenoy D., Little S., Langer R. et al. Poly(etylene oxide)-modified poly(b-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies. Pharm. Res. 2005; 22: 2107–2114.
  75. Silva G.A., Czeisler C., Niece K.L. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303: 1352–1355.
  76. Sirsi S.R., Williams J.H., Lutz G.J. Poly(ethylene imine)-poly(ethylene glycol) copolymers facilitate efficient delivery of antisense oligonucleotides to nuclei of mature muscle cells of mdx mice. Hum. GeneTher. 2005; 16: 1307–1317.
  77. Steiniger S.C., Kreuter J., Khalansky A.S. et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer 2004; 109: 759–767.
  78. Uemura A., Watarai S., Iwasaki T. et al. Induction of immune responses against glycosphingolipid antigens: comparison of antibody responses in mice immunized with antigen associated with liposomesprepared from various phospholipids. J. Vet. Med. Sci. 2005; 67: 1197–1201.
  79. Wang J.X., Sun X., Zhang Z.R. Enhanced brain targeting by synthesis of 3‘,5′-dioctanoyl-5-fluoro-2’-deoxyuridine and incorporation into solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 2002; 54: 285–290.
  80. Wendell W. Pharmacogenetics. Oxford: Oxford Univ. Press, 1997.
  81. Witt K.A., Huber J.D., Egleton R.D. et al. Pharmacodynamic and pharmacokinetic characterization of poly(ethylene glycol) conjugation to met-enkephalin analog [D-pen2,D-pen5]-enkephalin (DPDPE).Pharmacology 2001; 298: 848–856.
  82. Xie Y.L., Lu W., Jiang X.G. Improvement of cationic albumin conjugated pegylated nanoparticles holding NC-1900, a vasopressin fragment analog, in memory deficits induced by scopolamine in mice.Behav. Brain Res. 2006; 173: 76–84.
  83. Yang F., Fu D.L., Long J. et al. Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med. Hypotheses 2007; 29: 326–340.
  84. Zhao C., Jin Y., Zhang Y. et al. Comparative study of effects of nano-sized and microsized silicon dioxide dust on mouse embryos. Wei Sheng Yan Jiu. 2007; 36: 414–416.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2008 Seifulla R.D., Suslina Z.A., Kulykova E.V., Kim E.K., Timofeev A.B., Illarioshkin S.N., Rozhkova E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies