Glutamate receptors in neuronal and immune system cells

Cover Page


Cite item

Full Text

Abstract

The role of glutamatergic system in synaptic transmission and excitotoxicity is well established. Moreover, expression of glutamate receptors in a number of non-neuronal cells, where they may perform specific, as yet unknown functions, becomes evident. While the role of glutamic acid in the non-neuronal cells is not totally understood, this compound can be considered as a specific regulatory molecule not only for the central nervous system. Actually, recent publications demonstrate that glutamate receptors expressed in lymphocytes take part in the processes of their activation. Therefore, within the framework of the well-known paradigm of interaction between nervous and immune systems, glutamate can be regarded as neuroimmune modulator. Glutamate action on the immune cells may play an important role in the pathogenesis of different diseases, especially those accompanied by inflammatory reactions and/or increased levels of glutamate in brain and peripheral blood stream.

About the authors

O. N. Davydova

Research Center of Neurology

Email: platonova@neurology.ru
Russian Federation, Moscow

A. A. Boldyrev

Research Center of Neurology

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation, Moscow

References

  1. Костанян И.А., Наволоцкая Е.В., Нуриева Р.И. и др. Взаимодействие L-глутаминовой кислоты с Т-лимфоцитами человека. Биоорг. хим. 1997; 23: 805–808.
  2. Крыжановский Г.Н., Магаева С.В., Макаров С.В., Сепиашвили Р.И. Нейроиммунопатология. Руководство. М.: Изд-во НИИ общей патологии и патофизиологии, 2003.
  3. Balazs R. Trophic effect of glutamate. Curr. Top. Med. Chem. 2006; 6: 961–968.
  4. Beal M.F. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 1995; 38: 357–366.
  5. Bhave S.V., Ghoda L., Hoffman P.L. Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J. Neurosci. 1999; 19: 3277–3286.
  6. Blondeau N., Widmann C., Lazdunski M., Heurteaux C. Activation of the nuclear factor-kappa B is a key event in brain tolerance. J. Neurosci. 2001; 21: 4668–4677.
  7. Boldyrev A.A, Kazey V.I., Leinsoo T.A. et al. Rodent lymphocytes express functionally active glutamate receptors. Biochem. Biophys. Res. Commun. 2004; 324: 133–139.
  8. Boldyrev A.A., Carpenter D.O., Johnson P. Emerging evidence for a similar role of glutamate receptors in the nervous and immune systems. J. Neurochem. 2005; 95: 913–918.
  9. Carroll R.C., Zukin R.S. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends. Neurosci. 2002; 25: 571–577.
  10. Danysz W., Parsons C.G. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol. Rev. 1998; 50: 597–664.
  11. Dingledine R., Borges K., Bowie D., Traynelis S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999; 51: 7–61.
  12. Droge W., Eck H.P., Betzler M. et al. Plasma glutamate concentration and lymphocyte activity. J. Cancer Res. Clin. Oncol. 1988; 114: 124–128.
  13. Eck H.P., Frey H., Droge W. Elevated plasma glutamate concentrations in HIV-1-infected patients may contribute to loss of macrophage and lymphocyte functions. Int. Immunol. 1989; 1: 367–372.
  14. Eck H.P., Mertens T., Rosokat H. et al. T4+ cell numbers are correlated with plasma glutamate and cystine levels: association of hyperglutamataemia with immunodeficiency in diseases with different aetiologies. Int. Immunol. 1992; 4: 7–13.
  15. FioricaHowells E., Gambale F., Horn R. et al. Phencyclidine blocks voltage-dependent potassium currents in murine thymocytes. J. Pharmacol. Exp. Ther. 1990; 252: 610–615.
  16. Franconi F., Miceli M., De Montis M.G. et al. NMDA receptors play an anti-aggregating role in human platelets. Thromb. Haemost. 1996; 76: 84–87.
  17. Ganor Y., Besser M., BenZakay N. et al. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol. 2003; 170: 4362–4372.
  18. Ganor Y., Teichberg V.I., Levite M. TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage. J. Immunol. 2007; 178: 683–692.
  19. Genever P.G., Skerry T.M. Regulation of spontaneous glutamate release activity in osteoblastic cells and its role in differentiation and survival: evidence for intrinsic glutamatergic signaling in bone. FASEB J. 2001; 15: 1586–1588.
  20. Genever P.G., Wilkinson D.J., Patton A.J. et al. Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes. Blood 1999; 93: 2876–2883.
  21. Gill S.S., Mueller R.W., McGuire P.F., Pulido O.M. Potential target sites in peripheral tissues for excitatory neurotransmission and excitotoxicity. Toxicol. Pathol. 2000; 28: 277–284.
  22. Gill S.S., Pulido O.M., Mueller R.W., McGuire P.F. Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain. Res. Bull. 1998; 46: 429–434.
  23. Gill S.S., Pulido O.M., Mueller R.W., McGuire P.F. Immunochemical localization of the metabotropic glutamate receptors in the rat heart. Brain. Res. Bull. 1999; 48: 143–146.
  24. Grant S.G. Synapse signalling complexes and networks: machines underlying cognition. Bioessays 2003; 25: 1229–1235.
  25. Hetman M., Kharebava G. Survival signaling pathways activated by NMDA receptors. Curr. Top. Med. Chem. 2006; 6: 787–799.
  26. Hinoi E., Fujimori S., Nakamura Y., and Yoneda Y. Group III metabotropic glutamate receptors in rat cultured calvarial osteoblasts. Biochem. Biophys. Res. Commun. 2001; 281: 341–346.
  27. Hinoi E., Fujimori S., Yoneda Y. Modulation of cellular differentiation by N-methyl-D-aspartate receptors in osteoblasts. FASEB J. 2003; 17: 1532–1534.
  28. Hinoi E., Takarada T., Yoneda Y. Glutamate signaling system in bone. J. Pharmacol. Sci. 2004; 94: 215–220.
  29. Hitchcock I.S., Skerry T.M., Howard M.R., Genever P.G. NMDA-receptor-mediated regulation of human megakaryocytopoiesis. Blood 2003; 102: 1254–1259.
  30. Jiang X., Tian F., Mearow K. et al. The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. J. Neurochem. 2005; 94: 713–722.
  31. Jiang X., Zhu D., Okagaki P. N-methyl-D-aspartate and TrkB receptor activation in cerebellar granule cells: an in vitro model of preconditioning to stimulate intrinsic survival pathways in neurons. Ann. N. Y. Acad. Sci. 2003; 993: 134–145.
  32. Kalariti N., Pissimissis N., Koutsilieris M. The glutamatergic system outside the CNS and in cancer biology. Expert Opin. Investig. Drugs 2005; 14: 1487–1496.
  33. Kato H., Liu Y., Araki T., Kogure K. MK-801, but not anisomycin, inhibits the induction of tolerance to ischemia in the gerbil hippocampus. Neurosci. Lett. 1992; 139: 118–121.
  34. Khansari N., Whitten H.D., Fudenberg H.H. Phencyclidine-induced immunodepression. Science 1984; 225: 76–78.
  35. Khodorov B. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 2004; 86: 279–351.
  36. Komuro H., Rakic P. Modulation of neuronal migration by NMDA receptors. Science 1993; 260: 95–97.
  37. Lewis R.S. Calcium signaling mechanisms in T lymphocytes. Ann. Rev. Immunol. 2001; 19: 497–521.
  38. Lewis R.S. Calcium oscillations in T-cells: mechanisms and consequences for gene expression. Biochem. Soc. Trans. 2003; Oct. 31 (Pt. 5): 925–929.
  39. Lombardi G., Dianzani Ch., Miglio G. et al. Characterization of ionotropic glutamate receptor in human lymphocytes. Br. J. Pharmacol. 2001; 133: 936–944.
  40. Low C.M., Lyuboslavsky P., French A. et al. Molecular determinants of proton-sensitive N-methyl-D-aspartate receptor gating. Mol. Pharmacol. 2003; 63: 1212–1222.
  41. Manabe S., Lipton S.A. Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Invest. Ophthalmol. Vis. Sci. 2003; 44: 385–392.
  42. Mardiney M.R.Jr., Bredt A.B. The immunosuppressive effect of amantadine upon the response of lymphocytes to specific antigens in vitro. Transplantation 1971; 12: 183–188.
  43. Martino G., Hartung H.P. Immunopathogenesis of multiple sclerosis: the role of T cells. Curr. Opin. Neurol. 1999; 12: 309–321.
  44. Mashkina A.P., Tyulina O.V., Solovyova T. I. et al. The excitotoxic effect of NMDA on human lymphocyte immune function. Neurochem. Int. 2007; article in press (available online 4 May 2007).
  45. Mattson M.P., Meffert M.K. Roles for NF-kappa B in nerve cell survival, plasticity, and disease. Cell Death Differ. 2006; 13: 852–860.
  46. Miglio G., Varsaldi F., Dianzani C. et al. Stimulation of group I metabotropic glutamate receptors evokes calcium signals and c-jun and c-fos gene expression in human T cells. Biochem. Pharmacol. 2005; 70: 189–199.
  47. Miglio G., Varsaldi F., Lombardi G. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation. Biochem. Biophys. Res. Commun. 2005; 338: 1875–1883.
  48. Moalem G., Gdalyahu A., Shani Y. et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J. Autoimmun. 2000; 5: 331–345.
  49. Nitsch R., Pohl E.E, Smorodchenko A. et al. Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. J. Neurosci. 2004; 24: 2458–2464.
  50. Pacheco R., Ciruela F., Casado V. et al. Group I metabotropic glutamate receptors mediate a dual role of glutamate in T cell activation. J. Biol. Chem. 2004; 279: 33352–33358.
  51. Pacheco R., Oliva H., MartinezNavio J.M. et al. Glutamate released by dendritic cells as a novel modulator of T cell activation. J. Immunol. 2006; 177: 6695–6704.
  52. Pollock P.M., CohenSolal K., Sood R. et. al. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat. Genet. 2003; 34: 108–112.
  53. Poulopoulou C., Davaki P., Koliaraki V. et al. Reduced expression of metabotropic glutamate receptor 2mRNA in T cells of ALS patients. Ann. Neurol. 2005; 58: 946–949.
  54. Poulopoulou C., Markakis I., Davaki P. et al. Modulation of voltage- gated potassium channels in human T lymphocytes by extracellular glutamate. Mol. Pharmacol. 2005; 67: 856–867.
  55. Ravati A., Ahlemeyer B., Becker A. et al. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappa B. J. Neurochem. 2001; 78: 909–919.
  56. Riccio A., Ahn S., Davenport C.M. et al. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 1999; 286: 2358–2361.
  57. Rzeski W., Turski L., Ikonomidou C. Glutamate antagonists limit tumor growth. Proc. Natl. Acad. Sci. USA, 2001; 98: 6372–6377.
  58. Said S.I., Dey R.D., Dickman K. Glutamate signaling in the lung. Trends. Pharmacol. Sci. 2001; 22: 344–345.
  59. Schwartz M., Shaked I., Fisher J. et al. Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends. Neurosci. 2003; 26: 297–302.
  60. Shamloo M., Rytter A., Wieloch T. Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 1999; 93: 81–88.
  61. Stepulak A., Sifringer M., Rzeski W. et al. NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc. Natl. Acad. Sci. USA, 2005; 102: 15605–15610.
  62. Storto M., De Grazia U., Battaglia G. et al. Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells. J. Neuroimmunol. 2000; 109: 112–120.
  63. Storto M., De Grazia U., Knopfler T. et al. Selective blockade of mGluR5 metabotropic glutamate receptors protect rat hepatocytes against hypoxic damage. J. Hepatol. 2003; 38: 179–187.
  64. Storto M., Sallese M., Salvatore L. et al. Expression of metabotropic glutamate receptors in the rat and human testis. J. Endocrinol. 2001; 170: 71–78.
  65. Thomas J., Carver M., Haisch C. et al. Differential effects of intravenous anaesthetic agents on cell-mediated immunity in the Rhesus monkey. Clin. Exp. Immunol. 1982; 47: 457–466.
  66. Van Beek J., Elward K., Gasque P. Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann. N. Y. Acad. Sci. 2003; 992: 56–71.
  67. Wang J.Q., Fibuch E.E., Mao L. Regulation of mitogen activated protein kinases by glutamate receptors. J. Neurochem. 2007; 100: 1–11.
  68. Whitney K.D., McNamara J.O. GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J. Neurosci. 2000; 20: 7307–7316.
  69. Winter C.R., Baker R.C. L-glutamate-induced changes in intracellular calcium oscillation frequency through non-classical glutamate receptor binding in cultured rat myocardial cells. Life Sci. 1995; 57: 1925–1934.
  70. Yoo B.C., Jeon E., Hong S.H. et al. Metabotropic glutamate receptor 4-mediated 5-fluorouracil resistance in a human colon cancer cell line. Clin. Cancer Res. 2004; 10: 4176–4184.
  71. Zhu D., Wu X., Strauss K.I. et al. N-methyl-D-aspartate and TrkB receptors protect neurons against glutamate excitotoxicity through an extracellular signal-regulated kinase pathway. J. Neurosci. Res. 2005; 80: 104–113.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2007 Davydova O.N., Boldyrev A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies