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Contractile characteristics of rat skeletal muscles after spinal cord transection
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Abstract

Introduction. Traumatic spinal cord and peripheral-nerve injury is associated with release of proinflammatory cytokines and chemokines, which
may stimulate neuronal activity. Adenosine triphosphoric acid (ATP) is an important pain mediator involved in the acute and chronic neuropathic
pain development. Its excessive release from primary injured tissue leads to activation of P2-receptors, which may further start secondary injury
mechanisms. Although the effects of ATP on the peripheral nervous system are relatively well studied, the pathophysiological role of purinergic
signaling after spinalization remains unclear.

The study was aimed at assessing the post-spinalization effects of P2-receptors on the contractile characteristics of rat skeleton muscles.
Materials and methods. The objects of the study were the soleus muscle, the extensor digitorum longus (EDL) muscle, and diaphragm in intact rats
and spinalized rats. Seven days after laminectomy followed by spinal cord transection, animals were anesthetized, exsanguinated, and their muscles
with nerve stumps were isolated. Contractile response parameters were recorded using mechanomyography (MMG). To study effects of ATP on [i-
gand binding, ATP was added to a bath and mechanical responses in the rat muscles were assessed 7 min after. After washing with Krebs—Henseleit
solution, the preparations were incubated with suramin solution for 20 min with subsequent ATP application. Then the mechanical responses in the
muscles were again recorded. Statistical significance was assessed using Student's t-test for independent (unpaired) and paired samples.

Results. We found a significant (p < 0.05) decrease in the modulating activity of AT, as the main endogenous signaling agent, in the cholinergic
synapse of the soleus muscle from 32.4 to 5.8% and from 13.7 to 5.6% for the EDL muscle after the spinalization (spinal cord injury at the Th6-Th7
level) compared with intact animals. No such dramatic changes were observed in the diaphragm.

Conclusions. Abnormal ATP-mediated modulation of neuromuscular transmission demonstrated in this study supports the involvement of purinergic
signaling in the neurotrophic control and functioning of various motor units.
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AxHoTanusg

Beedenue. Tpasma cnunHoz0 M032d, nepucheputeckix Hepeos conposoxdaemcs 6bidesieHteM NPOBOCNANUMENbHbLX YUMOKUHOB U XeMOKUHOB,
KOMOpble MOZym yCUIUBAMb AKMUBHOCMb Helipoos. Cpedu Meduamopos nospexaexus 0cobo MOKHO 8bldeums adeHo3UHMpPUpOCHOPHYIo Kuc-
nomy (AT®), komopas 806neuera 6 npoyeccs! (OpMUPOBAHUA 0cmpoil U XpOHUUecKoll Hetiponamuueckoli 6o, u upe3mepHoe eé 6bic8000xOeHle
MpasMUPOEAHHOL MKAHbIO BbI3bl6aCM axmusayuio P2-peyenmopos, umo mosxem noausmb Ha MeXAHU3Mbl BMOPUUHO20 NOGPeKOeHUS MKAHELL.
Tpu obujeti usyuenrocmu aghpexkmos AT® Ha nepucpepuueckyio HepsHyio cucmemy namopuauUoI02ULeckas poib NYPUHEPIUUECKO20 CUZHATLHOZ0
36€H NPU CNUHAZIU3AYUU HE pacKpbima.

Llenw uccnedosanus — oyeHka OUHAMUKU COKPAUEHUT CKeNemHbLX Mblliit Kpbicbl npu 6030eiicmeuu Ha P2-peyenmopsl nocne cNUHAIU3AYUL.
Mamepuanot u memodot. O6exmom uccnedosanus ebicmynanu kambano6uoHas Moiuyd, OMuKHbIL paseubamens 00biI020 nanbya u duagppaz-
Ma UHMAKMHBLX KPbIC U JKUBOMHbIX NOCAE CnuHanusayuu. Yepes 7 cym nocsie 1amuHakmomuu ¢ nocnedyioujeli nepepeskoli CNUHHO20 M032a K-
BOMHbLX HAPKOMUBUPOBAILL, 00eCKPOBNUBATU U BbIOENAU MblULbL C KYNIbMAMU HEPB0S. Ilapamempbl COKpAMLUMEbHbLX OMBEMos peucmpuposa-
U MexaHomuozpauueckum memodom. Jns oyenxu adexmos nueardos 6 sanHouky dobasasau AT u uepes 7 Muk 0yeHUBATU MEXAHUYECKUe
omeembl Mbiuiy. [loczie ommetsku pacmeopom Kpebea urky6uposanu ¢ pacmeopom cypamuna 6 meuenue 20 mur ¢ nocredyiouum dobasneHuem
AT® u 6Ho6b peaucmpuposau MexaHuueckue omsemb! Mbiuy. Cmamucmuueckylo 3HauuMocmb OyeHusanu ¢ nomoubio kpumepus Cmolodesma
071 He3agUCUMBIX U NONAPHO CONPSKEHHBLX BbIOOPOK.

Pesynomamot. BoiasneHo sHauumoe (p < 0,05) cHusxenue modynupyloujeil akmugHoCMu 0CHOBH020 3HO02eHHoz0 azewma — AT 6 xonuHepauue-
ckom cunance kambanoguoHot Moyl ¢ 32,4 9o 5,8% u ¢ 13,7 do 5,6% ona dnunrozo paseubamens 6obuI020 Nasbya ecnedcmeue CNUKAIUIALUL
(nospesdenus cnuxHoz0 Mo32a Ha yposHe Th6-Th7) 6 cpasHenuu ¢ usmaxmHsiMu xusomotmu. Ha duadppazme cmonb dpamamuueckux uamexe-
Hul He Habodanoce.

3axmouenue. [IpodemoHcmpuposanHas Hamu aHomansuas mooynayus ATQ wepsHo-Mblieuro20 nepexoda npedocmasnsem dokasamenscmea
606/1E4EHHOCIIU NYPUHEP2UHUECK020 36€HA 6 Hellpompogpuueckuil KOHMPOIb U (YHKYUOHUPOBAHLE PASNUYHIX 0BLU2AMEbHbIX eOUHUL,

Kniouesvie cnoea: cnunanuzayus;, AT®; P2-peyenmopsl, ckenemHble Mbluilpl; mpasmamuyeckuti dgueamenvHuili CUHOpOM;
CcuHanc; cypamuH
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Introduction

Traumatic spinal cord and peripheral nerve injuries are
not unusual among people of working age and can be ac-
companied by severe and often irreversible motor disor-
ders. Traumatic spinal cord injury (SCI) is characterized
by immediate and irreversible tissue loss at the injury site
followed by the secondary injury in adjacent tissues over
time. Traumatic peripheral nerve injury is known to cause
various changes in the expression of intracellular signal-
ing molecules in the spinal cord [1], primarily in response
to increased release of various mediators in activated spi-
nal cord microglia [2], which may play an important role
in the neuropathic pain development and maintenance [3].

Microglia activated by a trauma produces and releases
pro-inflammatory cytokines and chemokines [4], which
can stimulate neuronal activity. Adenosine triphosphoric
acid (ATP) is an important pain mediator involved in the
development of acute and chronic neuropathic pain after
an injury [5]. Its excessive release by injured tissue acti-
vates high-affinity purinergic receptors in microglial cells,
which may further affect the mechanisms of additional
tissue damage, known as secondary injury [3].

Although the effects of ATP on the peripheral nervous
system are relatively well understood, the pathophysiolo-
gical role of purinergic signaling associated with spinaliza-
tion remains unclear. So, the objective of the study is to
evaluate the changes in contractile characteristics of rat
skeletal muscles associated with P2-receptor activity after
spinalization.

Materials and methods

Male Wistar rats aged 9-12 months, weighing 160-240 g,
were used for the experiments. The objects of the study
were the pelvic girdle and lower limb muscles, which are
fundamentally important for motor activity (slow-twitch
muscles [soleus muscle, m. soleus], fast-twitch muscles
[extensor digitorum longus muscle, m. extensor digitorum
longus, EDL], and functionally distinct respiratory muscle
[diaphragm, m. diaphragmal with their corresponding neu-
romuscular synapses) isolated from intact rats and spina-
lized animals.

One week prior to and during the experiments, rats were
housed in individual cages at room temperature of 22°C with
a 12 h/12 h light/dark cycle, access to water and food ad libi-
tum. All manipulations were performed at the same time of a
day. Rats were divided into 2 groups of 12 animals each: the
control group included intact animals and the spinalization
group included animals after spinal cord transection.

The surgery was performed under aseptic conditions and
combined intramuscular analgesia using zoletil (Zoletil 50,

Contractile characteristics of rat skeletal muscles after spinal cord transection
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Fig. 1. Schematic diagram of spinalization at Th6-Th?7.

Virbac) at a dose of 0.5 mg/kg and xylavet (XylaVET, Phar-
mamagist Ltd.) at a dose of 0.5 ml/kg. After dissection
of Th6-Th7 vertebrae, a laminectomy was performed to
expose the spinal canal with subsequent transection of the
spinal cord at this level (Fig. 1).

Seven days after the surgery, the animals were anesthe-
tized with sodium ethaminal (40 mg/kg intraperitoneally)
and exsanguinated. M. soleus, m. EDL, m. diaphragma were
isolated with nerve stumps fixed by both tendon ends, im-
mersed in 10 ml beakers filled with Krebs—Henseleit solu-
tion [6].

The nerve stump of the isolated muscle was placed in a
special nerve stump suction electrode for electrical stimu-
lation [7]. Rectangular pulses of 10 V amplitude and 0.5 ms
duration at a frequency of 0.1 Hz were applied for 2 min
using D330 MultiStim System. Contractile force was re-
corded with a force displacement transducer (Linton FSG-
01), the analog signal was digitized and processed using
a Biopack MP100WSW data acquisition system.

The initial load on the myoneural preparations was 1 g
on m. soleus and m. diaphragma and 0.5 g on m. EDL. The
muscle preparations were kept in the solution for half an
hour for adaptation, then the stability of the contractile
responses was assessed twice at 5-minute intervals [8].

To study the effects of purinergic agonists and antagonists,
100 uM ATP was added to the bath and the muscle mechan-
ical responses were assessed 10 minutes after. Further, after
20-minute washout of muscle preparations with Krebs-
Henseleit solution, the electrical stimulation was repeated.
To confirm the ATP effects on synaptic transmission, the
muscles preparations were maintained in 100 pM suramin
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(non-selective P2-receptor antagonist) for 20 min, followed
by the addition of 100 uM ATP (P2-receptor agonist), and
mechanical muscle responses were again recorded. In con-
trol experiments, contractile responses to indirect electrical
stimulation were recorded after 20-minute neuromuscular
tissue incubation with 100 uM suramin [9].

The responses recorded within 2 min (12 contractions)
were averaged and processed as a single value in % of the
baseline results obtained at the beginning of the experi-
ment. Statistical data analysis was performed with SPSS
Statistics software. Conformity to normal distribution was
checked using the Kolmogorov criterion. Statistical signifi-
cance was assessed using multivariate analysis of variance
(MANOVA) for independent and paired samples. The dif-
ferences were considered significant at p < 0.05.

Results and discussion

After the spinalization, contractile responses in m. soleus
and m. EDL changed divergently in contractile force and
in time parameters (Fig. 2; Table 1). In contrast, ampli-
tude-time parameter values in m. diaphragma remain sta-
ble, perhaps due to a higher position of phrenic motor
neurons, which were less affected by spinalization.

Application of 100 pM ATP to muscle preparations of
intact rodents modulates the contractility parameters: a
10-min exposure to ATP decreased the contractile force
of locomotor m. soleus and m. EDL and increased the con-
tractility of respiratory m. diaphragma. ATP had virtually
no effect on the neuromuscular preparations from the spi-
nalized animals. Only m. diaphragma remained sensitive to
the study nucleotide (see Table).

Suramin (100 uM) as a non-competitive inhibitor of P2-re-
ceptors showed no significant effects. In the presence of
suramin (100 pM), exogenous ATP (100 wM) activity was
completely inhibited in all study objects (see Table).

Our findings demonstrate a significant suppression of the
peripheral nervous system activity in the SCI animal mod-
el. Changes in synaptic signaling indicate axon degenera-
tion after the injury of the spinal cord at its upper levels.

Understanding mechanisms underlying suppression of
the peripheral nervous system is important to prevent
functional decline and maintain a high potential for mo-
tor function recovery, especially with cellular therapies
aimed at SCI repair.

Disorders of muscle function caused by SCI can result
from a mechanical injury and from secondary inju-
ry caused by pathophysiological response to the initial
trauma. For example, there are studies demonstrating
abnormally high and persistent ATP release levels in per-

itraumatic tissues in SCI rat models, indicating P2-signal-
ing involvement in the cascade of degenerative events,
known as secondary injury, and neurodegeneration after
the initial injury [10].

This cascade of injury-associated events include extensive
hemorrhage, necrosis of cellular components of the central
and peripheral nervous systems. The subsequent activation
of astrocytes and other cells located in close proximity to
the injury site results in extremely unfavorable conditions
for axon repair. The concurrent activation of the immune
system leads to additional tissue damage at the injury site
by attracting immune inflammatory cells, such as neutro-
phils and macrophages. On the other hand, macrophages
and T-helpers provide trophic support to damaged compo-
nents of the CNS. All of the above processes lead to axon
degeneration and the loss of communication between neu-
rons, which primarily results in various functional muscle
disorders [11].

20 msec

1g
m. soleus

20 msec

03¢g
4/\\MDL
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m. diaphragma

= =

Norm Spinalization

Fig. 2. Traces of single contractile responses of the isolated rat
m. soleus, m. EDL and m. diaphragma evoked by electrical stim-
ulation in controls and in spinalized rats (selected representative
traces are presented).
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Table 1. Parameters of rat muscle contractility evoked by electrical stimulation in different experimental conditions, n = 10-12

Experimental conditions n Parameter Control
M. soleus
CF 100,0+4,2
Normal value 10 CT 0,081 + 0,004
RT/2 0,092 + 0,007
CF 119,8 + 5,1#
Spinalization 10 CT 0,073 £ 0,005
RT/2 0,101 £ 0,009
M. EDL
CF 100,0 £4,5
Normal value 10 CT 0,057 + 0,003
RT/2 0,067 + 0,005
CF 88,7 + 3,8#
Spinalization 10 CT 0,068 + 0,005

RT/2 0,071 + 0,006
M. diaphragma

CF 100,0 £ 3,7
Normal value 12 CT 0,065 + 0,004
RT/2 0,075 + 0,006

CF 103,2 + 4,1
Spinalization 12 CT 0,071 £ 0,005

RT/2 0,074 + 0,003

Contractile characteristics of rat skeletal muscles after spinal cord transection

ATP,100 pM  Suramin, 100 pM Suramin, 100 pM + ATP, 100 uM
67,6 £52* 104,3+3,9 98,5+7,1
0,083 + 0,006 0,080 + 0,004 0,079 + 0,005
0,105+ 0,011 0,090 + 0,006 0,093 £ 0,010
114,0 £ 6,1# 120,2 + 4,3# 121,8 + 6,4#
0,076 + 0,007 0,071 £ 0,006 0,074 + 0,004
0,116 + 0,010 0,098 + 0,008 0,105+ 0,010
86,2 + 3,9* 102,0 £ 6,1 98,7 +5,3
0,056 + 0,005 0,059 + 0,004 0,058 + 0,006
0,069 + 0,004 0,065 + 0,007 0,068 + 0,005
83154 85,9 + 4,8# 83,1 £6,7#
0,069 + 0,006 0,068 + 0,006 0,067 + 0,005
0,073 + 0,007 0,070 + 0,005 0,073 £ 0,004
114,6 £5,2* 98,3+4,7 102,9£6,2
0,066 + 0,003 0,064 + 0,006 0,064 + 0,004
0,075+ 0,005 0,074 + 0,006 0,076 + 0,004
112,7 £ 3,9* 102,0 £4,9 103,8+7,5
0,070 + 0,003 0,069 + 0,004 0,072 + 0,004
0,076 + 0,006 0,074 + 0,005 0,075 + 0,006

Note. *p < 0.05 compared with the control group; #p < 0.05 compared with normal value. CF — contractile force (% from the level in the control group); CT — contractile time, s;

RT/2 — half-relaxation time, sec.

The obtained data demonstrate significant differences in
the mechanisms of contractility control in fast-twitch and
slow-twitch skeletal muscles of warm-blooded animals,
which is consistent with our earlier observations in spinal
shock models [12]. The suppression of P2-receptors af-
fecting muscle contraction associated with such a striking
response to spinalization demonstrates the involvement of
the purinergic signaling in the neurotrophic control and
functioning of various motor units.

Activation of spinal microglia caused by trauma leads to an
increased expression of P2-receptors. For example, P2X4R
levels have been shown to increase in association with SCI,
while P2X4R inhibition has been shown to reduce neuropa-
thic pain [13]. Another ATP-sensitive purinergic receptor,
P2X7, can form a macromolecular pore under repeated or pro-
longed exposure to high concentrations of ATP [14], which is
of paramount importance taking into consideration that ATP
release in peritraumatic regions rises massively. The role of
this receptor is particularly important in understanding SCI
pathophysiology due to its extensive expression in CNS neu-
rons [10]. There are data indicating potential involvement of
other receptor subtypes, namely, P2Y6, P2Y13 and P2Y14, in
the physiological responses of microglia [15, 16].

Despite the severity of the damage, even with exten-
sive SCI at the level of the thoracic segments, electrical

stimulation applied slightly below the level of the injury
allows to register stable rhythmic motor activity in the
lower limbs, which was demonstrated in a number of ani-
mal models [17, 18].

Inhibiting purinergic receptors can improve outcomes
in SCI patients. For example, intraspinal injection of a
P2X7-receptor antagonist into the peritraumatic region
reduced the damage caused by SCI [10]. P2X7R inhibition
also reduced motor neuron loss and promoted subsequent
functional recovery in injured animals.

On the other hand, axon membrane damage caused by
an injury is associated with rapid changes in intracel-
lular ion concentrations. The effects of ATP on spinal
cord neurons cause their excitation leading to a per-
sistent irreversible increase in Ca** levels resulting in
a cell death [10].

Moreover, a number of fundamental animal model stud-
ies demonstrated pathological changes in skeletal muscles
associated with SCI: the massive ATP release from dam-
aged tissues provokes local and generalized inflammatory
process with the release of proinflammatory cytokines (in
particular, interleukins-1 and -6), which mediates muscle
disorders, similar to muscle denervation atrophy [14].
ATP activates ionotropic P2XRs, particularly P2X7, which
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mainly leads to an increase in intracellular Ca** levels and
induces cytoskeletal reorganization, inflammation, apop-
tosis/necrosis, and proliferation, usually in a long-term
perspective [19].

Conclusion

Thus, all the data available by now only outline the ways
to study the mechanisms of the effects we have described.
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