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Abstract

Introduction. Cerebral small vessel disease (CSVD) is one of the leading causes of vascular and mixed cognitive impairment (CI). Treatment options
for CSVD-associated CI are limited. Repetitive transcranial magnetic stimulation (rTMS) is a promising non-drug treatment option.

The aim of the study was to evaluate the effects of 10 rTMS sessions of the left dorsolateral prefrontal cortex (DLPFC) on cognitive functions in
CSVD patients.

Materials and methods. The study included 30 patients with CSVD and moderate CI randomized to the active (DLPFC stimulation; n = 20) and
control (vertex stimulation; n = 10) groups. Both groups received 10 sessions of high-frequency rTMS. The DLPFC target was selected based on
the individual paradigm fMRI data with a focus on executive functions. Cognitive function was assessed using the Montreal Cognitive Assessment
Scale (MoCA), the Trail Making Test (TMT), the Tower of London Test, and the Rey-Osterritz Complex Figure Test before, immediately after, and
3 months after the stimulation. Adverse events were assessed using standardized questionnaires.

Results. The active group showed a significantly better effect compared to the control group according to MoCA, TMT A and B, The Tower of
London Test, delayed recall on the Rey-Osterrieth Complex Figure Test immediately after the stimulation and MoCA, TMT A and B and The Tower
of London 3 months after the stimulation. Adverse events in the study were mild and did not affect treatment adherence.

Conclusion. rTMS is a promising, safe, and well-tolerated treatment option for mild cognitive impairment in CSVD. However, additional research is
needed to make recommendations for its clinical use.
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impairment; cerebral small vessel disease
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AnHoTanug

Beedenue. Lepebpanshas mukpoaneuonamus (LIMA)/6onesHs menkux cocydos — OCHOBHAS NPULUHA COCYOUCTIbIX U CMEWAHHbLX ¢ dezeHepayuetl
KoerumugHbix paccmpoticme (KP). Boamosxrocmu mepanuu KP npu LIMA ozpanuuenst. Pummuueckas mpanckparuanibHas MazHUmHas cmumyns-
yus (pTMC) siengemcs nepcnexmugHblM Memodom ux HeMeOuKaMeHmo3HoL mepanuu.

Llenw uccnedosanus — oyerums agpdpexm 10 ceccuti pTMC nesoti dopconamepansHoii npegppormanshoii kopet (J/INOK) Ha koeHumusHble ¢yHK-
yuu y nayuermos ¢ LIMA.

Mamepuan u memodvt. B uccnedosaruu yuacmeosanu 30 nayuermos ¢ LIMA u ymepenrsimu KP. Onu Gbliu pandoMusuposarsi 8 akmusHyio
(cmumynsyus JJIIOK; n = 20) u kowmponvHyio (cmumynsyus eepmekca; n = 10) epynnet. B obeux epynnax nposedero 10 ceccuii sbicokouacmom-
noti pTMC. Muwens 6 npedenax JJITIOK evibupanacy no uxdusudyansivim dannim GMPT ¢ napaduemoil Ha ynpasnsiowjue (yHkyuu mo3ea.
KoznumugHste ¢hyrkyuu oyerusanu no Morpeabckotl wikane oyerku kozHumueHozo cmamyca (MoCA), mecmy nocmpoerus nymu (TMT), «6awme
Jlondona» u komnnexcHoii (ueype Pes—Ocmeppuya do, cpasy nocze u uepe3 3 mec nocne cmumynayuu. HexenamensHole 5671eHUS 0yeHUSANU NO
CMaHAApMU3UPOBAHHbLM ONPOCHUKAM.

Pesynomamt. CpasHerue 3¢gexkmos Mexdy epynnamu noxkaszano cmamucmuuecku 3HaUUMOo JTydwutl shpexm 8 axmueHotl epynne, ueM 8 KOH-
mposbHol, no pesynbmamam wikans: MoCA, mecmos nocmpoenus nymu A, B, «<oawns JIoHOOH@», 0mcpoueHHOMy 80CNpOU3Ee0eHUI0 KOMNJIEKCHOL
dueypst Pes—Ocmeppuya cpasy nocse cmumynsyuu u wikanst MoCA, mecmos TMT A, B u «bawins Tondora» uepe3 3 mec nocsie cmumynayuu. Ha-
OmodaeMmble 6 UCCNE00BAHUL HexXeamelbHble A671eHUS ObLIU IEZKUMU N0 BbIPAXEHHOCTIU U HE 8USIU HA NPUBEPKEHHOCTb NALUEHTIO8 JIEUEHUIO.
3axmouenue. pTMC sensemces MHo2000ewaiowuM, 0€30nacHbLM U XOPOLLO NepeHocUMbLM Memodom mepanuu ymepenHsix KP npu [IMA, 00ako
01 (opMUPOBaHUS pekoMeHOYULi N0 NPUMEHEHLI0 8 KIUHUYECKOL npakmuke Heo0X00uMbl 0ONONHUMEbHble UCCIE008aHUS.

Kniouegvle cnosa: pummudeckas MpaHCKpaHuatbHasa MAZHUMHAA CMUMYJIAYUSA; HEUHBA3UBHAA CMUMYIAYUA 20/I06HO20 MO32d;
YMEpEHHbIE KOZHUMUBHbLE paccmpoﬁcmea; cocyaucmbte KOZHUMuUBHble paccmpoﬁcmea; 6oNe3Hb MENKUX cocyaoe; qepe6pa/1bHaﬂ
MUKpoaHzuonamus.
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Introduction

Cerebrovascular disease is the second most common cause
of cognitive impairment after Alzheimer's disease [1]. Ce-
rebral small vessel disease (CSVD) is a leading cause of
vascular cognitive impairment [2, 3]. Currently, treatment
options for vascular cognitive impairment are limited [4].

Mild cognitive impairment (MCI) is a decline in cognitive
function that exceeds that of normal aging but does not
meet the clinical criteria for dementia [5]. In the popula-
tion aged 65 years and older, the MCI prevalence is equal
to or greater than that of dementia and may reach 42% [6].
However, MCI not only deteriorates quality of life [7], but
is also an independent risk factor of dementia; 20-30% of
cases of mild cognitive impairment progress to dementia
within 6 years [1].

Repetitive transcranial magnetic stimulation (rTMS) is
a non-invasive brain stimulation method increasingly
used to treat neurological disorders [8]. The mechanism
of the therapeutic rTMS effect is usually associated with
TMS-induced synaptic plasticity [9].

r'TMS is best studied for treatment of Alzheimer's cog-
nitive impairment. A meta-analysis included 12 stu-
dies (n = 231) with different rTMS protocols, including
multi-target stimulation and stimulation of the dorso-
lateral prefrontal cortex (DLPFC). A statistically signif-
icant improvement in cognitive function was found in
the active stimulation group compared to the control
group. The effect was greater in milder forms of Alzhei-
mer's disease [10]. The most compelling evidence for ef-
ficacy was obtained using a multi-target rTMS protocol
combined with target-specific cognitive training, called
r'TMS-COG. In the international expert recommenda-
tions, this protocol was assigned a level of evidence C [8].
A randomized, placebo-controlled study showed a sta-
tistically significant effect of high-frequency rTMS of
the left DLPFC on memory in elderly patients with am-
nestic MCI [11].

A relatively large number of studies evaluated the use of
TMS in Alzheimer's disease and amnestic MCI (as a pre-
dementia stage of Alzheimer's disease). The use of TMS
in vascular cognitive impairment has been less stud-
ied. Most studies evaluated the diagnostic use of TMS,
while only few studies evaluated the therapeutic effect
of rTMS [12-14]. Two studies investigated the effect of a
single rTMS session on the left DLPFC. I. Rektorova et al.
showed that executive functions (EF) measured with the
Stroop test improved after 1 rTMS session [12]. S. Sed-
lackova et al. found no statistically significant differences
between stimulation of DLPFC and M1 (control target)
[13]. One of more recent studies showed the effect of
supplementary motor area rTMS on cognitive functions

in CSVD patients with MCI [14]. There are no studies on
the efficacy of multiple sessions of the left DLPFC rTMS
in CSVD patients.

It is important to explore the potential of personalized
targets for rTMS due to the structural and functional he-
terogeneity and interindividual anatomical variability of
the cerebral cortex. One way of personalization is to use
structural neuroimaging to construct a 3D model of the
head and then to overlay functional neuroimaging data
such as resting-state fMRI and task fMRI [15]. For exam-
ple, functional connectivity-based personalization is being
actively studied in depression [16-19]. Task fMRI-guided
navigated TMS is actively used in studies with healthy
volunteers [20], but is rarely applied in clinical practice
(J.P. Szaflarski et al. reported its use in patients with post-
stroke aphasia [21]).

The aim of this study was to evaluate the immediate and
delayed effects of 10 sessions of fMRI-guided high-fre-
quency rTMS of the left DLPFC on cognitive functions in
CSVD patients with MCL.

Materials and methods

This randomized, double-blind, placebo-controlled, parallel
study was conducted at the Research Center of Neurology.

Inclusion criteria:

* Age of 45 to 80 years,

» (CSVD diagnosed according to STRIVE guidelines (2013) [22],

* MCI diagnosed using VASCOG criteria [23],

* No changes in treatment for cognitive impairment or use
of other central nervous system agents for 1 month before
rTMS, during rTMS, and for 3 months after the stimulation.

Exclusion criteria:

 Contraindications to rTMS and/or MR],

» History of stroke (except lacunar one),

History of epilepsy or epileptiform discharges on EEG,
Use of antidepressants and antipsychotics,
Decompensation of severe somatic disease,

Mental disorder or alcohol and/or drug abuse.

The study was conducted in accordance with the Dec-
laration of Helsinki and approved by the local ethics
committee of the Federal State Budgetary Scientific
Institution “Research Center of Neurology” (Protocol
No. 12-4/16 dated 14 December 2016). Prior to enroll-
ment, all patients signed an informed consent form.

Design of the study
After enrollment, all patients were randomized using

sealed envelope method in a 2:1 ratio to active stimulation
(left DLPFC) or control stimulation (vertex area).
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Prior to stimulation (T0), cognitive functions were as-
sessed, and patients underwent task fMRI. Subsequently,
10 rTMS sessions (5 sessions per week) were performed.
Cognitive functions were reassessed immediately (T1) and
3 months (T2) after the rTMS treatment. The investigator
performing the initial clinical assessment for eligibility and
repeated cognitive assessments at each stage was blinded
to the stimulation protocols.

Cognitive function tests

The Montreal Cognitive Assessment Test (MoCA) was
used to assess general cognitive status. Additional tests
were used to assess EF and visuospatial functions [24].
EF was assessed using the Trail Making Test (TMT),
with the TMT-A subtest assessing psychomotor speed
and the TMT-B subtest assessing divided attention, and
the Tower of London test assessing cognitive control.
Visuospatial functions were assessed by copying the
Rey-Osterrith Complex Figure Test (ROCF), and non-
verbal memory was assessed by delayed recall of the CF
30 min after copying [25].

Neuroimaging

All patients had structural MRI and task fMRI on a 3T
Magnetom Verio (Siemens) for determination of the stim-
ulation target. The anatomical structure was visualized
using a 3D-T1 gradient echo with multiplanar reconstruc-
tion (3D-T1 MPR) sequence consisting of 176 sagittal
slices (TR = 1940 ms; TE = 308 ms; interslice interval =
0.5 mm; field of view = 250 mm; matrix = 256x256; slice
thickness = 1 mm). The paradigm fMRI used an axial
T2* gradient echo sequence (TR = 3000 ms; TE = 30 ms;
slice thickness = 3 mm).

The paradigm had a block design and consisted of 4 acti-
vation blocks and 4 rest blocks, with each block lasting
30 s. Before the start and at the end of each activation
block, subjects were verbally instructed to start or stop
the task. They were asked to count silently starting from
1 and skipping multiples of 3. When the next activation
block began, the patient repeated counting from 1 [26].
Before the MRI, the patient was trained to perform the
task outside the scanner under the supervision of the
investigator.

SPM12 for MATLAB R2018a (Mathworks) was used for
preprocessing and statistical analysis of individual fMRI
data to determine the stimulation target!. The first level
analysis used a regressor with a value of 1 in the acti-
vation block, 0 in the rest block, and a T-contrast corre-
sponding to the regressor with a voxel-wise significance

' Statistical Parametric Mapping; Wellcome Centre for Human Neuroimaging, UCL Queen
Square Institute of Neurology, London, UK. URL: http://www fil.ion.ucl.ac.uk/spm

fMRI-guided rTMS in cognitive impairment

threshold of 0.001 without correction. The data obtained
were co-registered with the structural data and uploaded
to the navigation system. The rTMS target was positioned
within the left DLPFC (corresponding to the middle fron-
tal gyrus) according to the visually detectable maximum
activation.

Transcranial magnetic stimulation

The navigation system of the NBS eXimia Nexstim stim-
ulator (Nexstim Plc) was used for fMRI-guided naviga-
tion rTMS. The target for active stimulation was located
in the DLPFC while the control group used the vertex
detected by visible anatomical landmarks. For rTMS, a
Magstim Rapid 2 stimulator (Magstim Company Ltd.)
was used with a figure-of-eight coil calibrated for na-
vigation. Stimulation was performed at an intensity of
100% of the resting motor threshold of m. abductor pol-
licis brevis, determined using the Rossini-Rothwell al-
gorithm [27]. In both groups, high-frequency rTMS was
performed with a stimulation frequency of 20 Hz, 2-se-
cond trains with a 28-second intertrain interval, 2400
stimuli per session, for a total of 10 sessions. Patients
completed standardized TMS tolerability questionnaires
(adverse events (AEs) during stimulation and within
24 hours after the stimulation).

Statistical analysis

MATLAB R2018a (Mathworks) was used for statistical
analysis. Normal distribution was tested using the Sha-
piro-Wilk test. The data were non-Gaussian distributed,
so non-parametric methods were used. The Friedman test
was used to determine changes in cognitive test scores
between the 3 intra-group measurements. The Wilcoxon
test was used for paired intra-group comparisons. The
Mann-Whitney test was used to compare quantitative
characteristics between groups (comparison of effects).
The Fisher's test (for binary characteristics) and the Fish-
er-Freeman—Halton test (for 3 levels of the Fazekas scale)
were used for comparing qualitative parameters. Changes
were considered significant at p < 0.05.

Results

Patients

A total of 96 patients were screened for the study, of which
30 patients were included into the final analysis (Figure 1).
There were no statistically significant differences in gen-
der, age, severity of neurological symptoms, or cognitive
test scores between two groups (Table 1).

All patients underwent paradigm fMRI with a target iden-
tification in the left DLPFC. Figure 2 shows the stimulation
target localization for the active group.
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Enrollment Assessed for eligibility (7 = 96)

| > Excluded — not meeting inclusion criteria
| (n=63)

Randomized (n = 33)

Allocation
Allocated to intervention — Allocated to intervention —
received allocated intervention (n = 21) received allocated intervention (n = 12)
l Follow-up l
Lost to follow-up (logistics reasons) (n=1) Lost to follow-up (logistics reasons) (n = 2)
Analysis
Analysed (n = 20) Analysed (n =10)

Puc. 1. Biok-cxema 0TG0pa MAIMEHTOB.
Fig. 1. Flow chart.

Table 1. Demographic, clinical, and neuroimaging characteristics of patients

Parameter Ac(t;v: g:)t;up cu?}:ﬂ'?g;’““ p
Sex (male), n (%) 10 (50%) 2 (20%) 0.24
Age, years, Me [Q1; Q3] 60 [57.5; 66.5] 58 [57.5; 69.0] 0.94
Gait disorder, nn (%) 14 (70%) 6 (60%) 0.69
Pseudobulbar palsy, n (%) 5 (25%) 2 (20%) 1.00
White matter hyperintensity (Fazekas scale) 0.73
Fazekas | 2 (10%) 0

Fazekas I 9 (45%) 4 (40%)

Fazekas Il 9 (45%) 6 (60%)

White matter lacunes, n (%) 12 (60%) 4 (40%) 0.44
Lacunes in subcortical structures, n (%) 6 (30%) 5 (50%) 0.43
Brainstem lacunes, 11 (%) 9 (45%) 4 (40%) 1.00
Juxtacortical microbleeds, n (%) 5 (25%) 3 (30%) 1.00
Subcortical microbleeds, n (%) 11 (55%) 3 (30%) 0.26
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Fig. 2. Localization of stimulation target within the left DLPFC in
the active group.

Assessment of the intra-group effect

In the active group, using the Friedman test, a statistically
significant effect of time point was reported for MoCA test
(p <0.001), TMT-A (p = 0.012), TMT-B (p < 0.001), the Tower
of London (p < 0.001), and delayed CF recall (p = 0.009)

Table 2. Intra-group effect of rTMS, Me [Q;; Q;]

Test Time points

TO
MoCA, score T1
T2
TO
TMT-A, sec T1
T2
TO
TMT-B, sec T
T2
TO
The Tower of London Test, score T
T2
TO
Complex Figure, copying, score T
T2
TO
Complex Figure, delayed recall, score T
T2

fMRI-guided rTMS in cognitive impairment

test. For CF copying, the effect was not statistically signif-
icant (p = 0.929). In the control group, the effect of time
point was not statistically significant for all tests (MoCA,
p = 0.119; TMT-A, p = 0.368; TMT-B, p = 0.347; the Tower
of London, p = 0.187; copying and recall of CF, p = 0.867
and p = 0.792, respectively).

In a pairwise comparison using the Wilcoxon test, a statis-
tically significant improvement was reported immediately
after the stimulation and 3 months after the stimulation for
the MoCA, TMT-B, and Tower of London tests, while for the
TMT-A and delayed CF recall, a statistically significant im-
provement was reported only immediately after the stimula-
tion, and no significant changes were observed when copying
the CF (Table 2). In the control group, no statistically signif-
icant changes were observed in any of the tests used, either
immediately or 3 months after the stimulation (Table 2).

Comparison of inter-group effects

When comparing the effects between the active and con-
trol groups, the active group showed a statistically signifi-
cant greater effect on the MoCA, TMT-A, TMT-B, and the
Tower of London tests immediately and 3 months after
the stimulation. For delayed recall of CF, the active group
showed a statistically significant greater effect only imme-

Active group Control group

(n=20) p (n=10) p

24 [22; 26] - 22 [22; 24] -
26 [24; 28] <0.001 25 [22; 25] 0.094
26 [19.5; 27] 0.001 23 [21; 24] 0.329

69 [51.0; 91.5] _ 56 [47; 76] -
53 [42.5: 72.5] 0.009 57 [52; 86] 0.91
58 [41; 87.5] 0.08 57 [52; 86] 0.093

162 [126.0; 256.5] - 168 [135; 243] -
138 [106.5;219.5]  0.007 186 [109; 207] 0.071
119 [82; 173] 0.032 169 [138; 244] 0.889

12.5 [8.75; 16] - 12 [11; 14]. -
13[11.0; 18.5] 0.002 12 [11; 16] 0.083
14 [12.5, 16.5] 0.044 101[9; 13] 0.724

32 [27.5; 35] - 34 [33; 34] -
34 [27.5; 36] 0.279 33 [32; 35] 0.656
33 [28; 36] 0.612 27 [25; 31] 0.380

16 [8; 21.75] - 15.5 [7; 21.5] -
20 [10.25: 26.75] 0.003 17.5 [15.5; 26] 0.102
16 [9.75; 26.75] 0.690 14 [12; 21] 0.500

Note. T0, baseline testing; T1, testing immediately after the stimulation; T2, testing 3 months after the stimulation; p for T1 and T2 was calculated as a pairwise comparison for T1/T0 and

T2/T0, respectively.
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Table 3. Effect sizes of rTMS (difference in cognitive test scores between T1 and T0. T2 and T0) and comparison of active

and control groups. Me [Q;; Qj]

Test Time point

T

MoCA
0 T2
TMT-A M
- T2
T1

TMT-B
T2
T1
The Tower of London Test T
Complex Figure. copyin m
p gure. copying T
' T
Complex Figure. delayed recall T2

Active group Control group

(n = 20) (n=10) p
2[1; 3] 11[0;2] 0.044
2 [0; 3] 11[0; 1] 0.044
-9 [-22.5; -3] 7[-4;12] 0.007
-5[-26.5; 7.5] 7[-4; 21] 0.041
-15[-54; 6] -5[-10; 9] 0.014
—46 [-56.5; —18.5] -5[-10; 9] 0.006
2 [2;3.5] 11[0;1]. 0.019
3[2; 5] 11[0; 3]. 0.046
0[-1; 3.5] 0[-1;1] 0.275
0[-1.5; 3] 0[-1;1] 0.270
3[0.75; 5.5] 1.5[-0.5; 2.5] 0.043
1.5 [-1.75; 4] 0.5 [-0.5; 4] 0.480

Note. T0. baseline testing; T1. testing immediately after the stimulation; T2. testing 3 months after the stimulation. A negative value indicates a decline in the test scores. A positive score indicates
an improvement for all tests except TMT. where improvements are indicated by a negative score and declines are indicated by a positive score.

diately after the stimulation. For copying CF, no statistically
significant difference was found between the active and
control groups (Table 3).

Tolerability

Data from 270 sessions were analyzed (180 sessions in
the active group and 90 sessions in the control group).
No serious adverse events were reported during rTMS in
any group. Pain at the site of stimulation was observed in
11.7% of all rTMS sessions in the active group and in 9%
of all rTMS sessions in the control group. Pain severity
on the numerical rating scale was 1 in 61.9% of cases,
2 in 28.6%, 3 in 4.75%, and 5-6 in 4.75% in the active group
and it was 2 in 62.5% of cases, 3 in 25%, 6 in 12.5% in
the control group. Other discomfort sensations at the site
of stimulation (muscle contractions, burning, itching, etc.)
were observed in 15.5% of all sessions in the active group
and in 2.2% in the control group. Patients reported somno-
lence in 11.7% of sessions in the active group and 17% of
sessions in the control group. Headache within 24 hours
of stimulation was reported in 3.9% of all sessions in the
active group and 8.9% in the control group. When com-
paring the incidence of AEs between the active and con-
trol groups, there was no statistically significant difference
for headache during (p = 0.539) and after the stimulation
(p = 0.08), as for the somnolence (p = 0.26), and the statis-
tically significant difference was found only for non-pain-
ful discomfort (p < 0.001).

Discussion

Our paper showed that 10 sessions of fMRI-guided rTMS
of the left DLPFC significantly improved cognitive func-
tions in CSVD patients with MCIL. The active group showed

the significantly greater effect compared to the control
group, both at the general cognitive level and in specific
domains (EF and non-verbal short-term memory), and this
effect persisted across a range of tests for 3 months after
the stimulation. The proposed rTMS protocol for MCI had
a good safety and tolerability profile.

In our protocol, the left DLPFC was used as a stimulation
target. The choice of the target area was based on the
available data on the role of this area in vascular cognitive
impairment [28, 29], as well as on previous studies show-
ing the efficacy of stimulation of the left DLPFC in cogni-
tive impairment of various etiologies [30]. The activity of
the frontal lobes plays a key role in the EF, and in CSVD
early decline in EF is observed [28]. Loss of frontal-parie-
tal connectivity in white matter involvement is current-
ly considered an important factor in the pathogenesis of
cognitive impairment in CSVD [29]. A significant loss of
interhemispheric and frontal connectivity in CSVD has
been demonstrated by structural connectivity studies [28].

Along with the EF scores, nonverbal memory and overall
cognitive level improved. However, no statistically signi-
ficant changes in visuospatial functions (CF copying test)
were found in our study, which may be due to the pre-
dominant role of the posterior parts of the cerebral cortex,
such as the parietal and occipital cortex, for this domain
[31]. Further studies are required to evaluate the efficacy
of r'TMS in cortical regions other than DLPFC or multisite
TMS for the treatment of visuospatial deficits in MCI.

In our study, we analyzed individual paradigm fMRI data
to determine target localization. fMRI-guided TMS is con-
sidered one of the potential methods to increase the effi-
cacy of rTMS [32-34]. Comparing different approaches to
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target detection (using a 10-20% electrode positioning sys-
tem, using structural MRI, fMRI, or a target in Talairach
space), determination of a significant effect of rTMS of
the right DLPFC on fMRI reaction time requires a 10-fold
smaller sample size compared to using the 10-20% system
[33]. A recent meta-analysis showed that fMRI-guided na-
vigation for rTMS in healthy volunteers had a higher online
effect compared to other methods of target selection [20].

Our choice of paradigm is primarily based on the switch-
ing task, but also involves other components of EF and
limits the effect of learning [35].

Limitations of target selection using individual paradigm
fMRI data include the low reproducibility of fMRI results at
the individual level [36]. It is unclear what impact this may
have on clinical efficacy. However, we did not compare our
method with other methods of target selection. Therefore,
we cannot conclude on the advantage of a personalized
approach and its appropriateness for real clinical practice.

It should be noted that the effect of rTMS on some of
the tests persisted for at least 3 months after treatment.
M. Sabbagh et al. reported a positive effect after TMS-
COG treatment that was more significant 12 weeks after
r'TMS compared to that after 7 weeks, which is consis-
tent with the data obtained in this study [37]. Given the
progressive nature of cognitive impairment in CSVD, this
suggests that rTMS may have an effect on the course of
the disease. However, this statement requires further in-
vestigation in separate studies. It is also useful to study
the effect of repeated rTMS courses or maintenance ses-
sions after the main treatment. The latter approach has
been shown to be effective in other conditions, such as
depression and pain syndromes [38, 39].

One of the most promising areas for future research is
the development of effective combined protocols for rTMS
and cognitive training. The potential enhancement of neu-
romodulation effects by combining it with various meth-
ods of cognitive interventions is being actively studied in
several neurological and mental disorders [40]. This ap-
proach has been shown to be effective in Alzheimer's dis-
ease [38] and requires further study in vascular cognitive
impairment.
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