Значение дегенерации ядер таламуса при ремиттирующем и вторично-прогрессирующем рассеянном склерозе: результаты нейропсихологического и морфометрического исследования

А.Г. Труфанов¹, Г.Н. Бисага², Д.И. Скулябин¹, А.В. Тёмный¹, А.А. Юрин¹, М.О. Попляк¹, И.Д. Полтавский¹, И.В. Литвиненко¹, М.М. Одинак¹, Д.А. Тарумов¹

¹ФГБВОУ ВО «Военно-медицинская академия имени С.М. Кирова», Санкт-Петербург, Россия; ²ФГБУ «Национальный медицинский исследовательский центр имени В.А. Алмазова», Санкт-Петербург, Россия

Введение. Таламус является «передающим органом», который участвует в широком спектре неврологических функций. Функциональная уникальность и высокая чувствительность к повреждению при рассеянном склерозе (PC) в самых ранних стадиях заболевания делают таламус барометром диффузного повреждения головного мозга при PC.

Цель исследования — изучить структурные и функциональные изменения таламуса и его субрегионов методом магнитно-резонансной морфометрии и определить их клиническую значимость при различных типах течения PC.

Материалы и методы. Обследовано 68 пациентов с ремиттирующим (n = 40) и вторично-прогрессирующим (n = 28) типами течения PC, контроль составили 10 здоровых человек соответствующего возраста и пола. Неврологическая оценка пациентов проведена по шкалам инвалидизации (EDSS) и агрессивности PC (MSSS). Когнитивную и психическую сферы тестировали с использованием MMSE, FAB, MoCA, SDMT, теста Бека и HADS. Всем пациентам были выполнены MPT головного мозга и проведена морфометрическая оценка полученных данных с по-мощью программы «Freesurfer 6.0».

Результаты. Объемы ядер подушки таламуса при ремиттирующем PC были снижены слева (M (переднее : заднее) = 186,6 : 149,4 мм³) в сравнении с контролем (229,5 : 187,5 мм³) и справа (219,5 : 187,1 мм³) в сравнении с контролем (261,6 : 240,5 мм³; p < 0,05). Размеры левых ядер таламуса были достоверно снижены при вторично прогрессирующем PC по сравнению с ремиттирующим PC и контролем. С EDSS коррелировали уменьшение объемов коленчатых тел слева (r = -0,48) и ядер подушки таламуса слева (r = 0,46-0,54). Стандартные нейропсихологические шкалы коррелировали с объемом медиадорсального медиального крупноклеточного ядра (r(MMSE : FAB : MoCA) = 0,51 : 0,45 : 0,59). Максимальная корреляция теста SDMT (письменный раздел) установлена с левым вентральным передним ядром (r = 0,71).

Заключение. Полученные данные свидетельствуют о высокой значимости атрофии ядер таламуса в прогрессировании инвалидизации и когнитивных нарушений при РС. Магнитно-резонансная морфометрия ядер таламуса может рассматриваться как важный маркер и предиктор прогрессирования РС.

Ключевые слова: рассеянный склероз; прогрессирование; нейродегенерация; атрофия; магнитно-резонансная томография; магнитно-резонансная морфометрия; когнитивные нарушения; таламус; ядра подушки таламуса.

Источник финансирования. Авторы заявляют об отсутствии финансирования при проведении исследования.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Адрес для корреспонденции: 194044, Россия, Санкт-Петербург, улица Академика Лебедева, д. 6. ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова». E-mail: trufanovart@gmail.com. Труфанов А.Г.

Для цитирования: Труфанов А.Г., Бисага Г.Н., Скулябин Д.И., Тёмный А.В., Юрин А.А., Попляк М.О., Полтавский И.Д., Литвиненко И.В., Одинак М.М., Тарумов Д.А. Значение дегенерации ядер таламуса при ремиттирующем и вторично-прогрессирующем рассеянном склерозе: результаты нейропсихологического и морфометрического исследования. *Анналы клинической и экспериментальной неврологии* 2020; 14(3): 21–30.

DOI: 10.25692/ACEN.2020.3.3

Поступила 22.11.2019 / Принята в печать 27.04.2020

The significance of thalamic nuclei degeneration in relapsing-remitting and secondary progressive multiple sclerosis: results of neuropsychological and morphometry studies

Artem G. Trufanov¹, Gennadiy N. Bisaga², Dmitriy I. Skulyabin¹, Alexandr V. Tyomniy¹, Anton A. Yurin¹, Maria O. Poplyak¹, Iliva D. Poltavskiv¹, Igor V. Litvinenko¹, Miroslav M. Odinak¹, Dmitriv A. Tarumov¹

> ¹S.M. Kirov Military Medical Academy, St. Petersburg, Russia; ²V.A. Almazov National Medical Research Centre, St. Petersburg, Russia

Introduction. The thalamus is a 'transmitting organ' that is involved in a wide range of neurological functions. Its functional uniqueness and high sensitivity to damage during the earliest stages of multiple sclerosis (MS) make the thalamus a kind of barometer of diffuse brain damage in MS.

The **aim** of the study was to examine the structural and functional changes in the thalamus and its subregions using magnetic resonance morphometry and to determine their clinical significance in different types of MS.

Materials and methods. We examined 68 patients with relapsing-remitting (n = 40) and secondary progressive (n = 28) MS. The control group consisted of 10 healthy people matched for age and gender. The Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Severity Score (MSSS) were used to assess the patients' neurological status. The cognitive and mental domains were tested using the MMSE, FAB, MoCA, SDMT, Beck's test, and HADS. All patients underwent a brain MRI and morphometric evaluation of the obtained data using the FreeSurfer 6.0 software.

Results. The size of the thalamic pulvinar in relapsing-remitting MS was reduced on the left (M (anterior : posterior) = $186.6 : 149.4 \text{ mm}^3$) compared with the controls (229.5: 187.5 mm³) and on the right (219.5: 187.1 mm³) compared with the controls (261.6: 240.5 mm³; p < 0.05). The size of the left thalamic nuclei was significantly reduced in secondary progressive MS when compared with relapsing-remitting MS and the controls. EDSS was correlated with a decrease in the dimensions of the geniculate nucleus on the left (r = -0.48) and the pulvinar nuclei on the left (r = 0.46 - 0.54). Standard neuropsychological scales correlated with the size of the medial dorsal nucleus (r ($\dot{M}\dot{M}SE:FAB:\dot{M}oCA$) = 0.51; 0.45; 0.59). The greatest correlation was between the $\dot{S}DMT$ test (written section) and the left ventral anterior nucleus (r = 0.71).

Conclusion. The obtained data indicate that thalamic nuclei atrophy plays a significant role in the progression of disability and cognitive disorders in MS. Magnetic resonance morphometry of the thalamic nuclei can be considered an important marker and predictor of MS progression.

Keywords: multiple sclerosis; progression; neurodegeneration; atrophy; magnetic resonance imaging; magnetic resonance morphometry; cognitive disorders; thalamus; pulvinar nuclei.

Acknowledgments. The study had no sponsorship.

Conflict of interest. The authors declare no apparent or potential conflicts of interest related to the publication of this article. **For correspondence:** 125367, Russia, Moscow, Volokolamskoye shosse, 80. Research Center of Neurology. E-mail: bakulin@neurology.ru. Bakulin I.Ŝ

For citation: Trufanov A.G., Bisaga G.N., Skulyabin D.I., Tyomniy A.V., Yurin A.A., Poplyak M.O., Poltavskiy I.D., Litvinenko I.V., Odinak M.M., Tarumov D.A. [The significance of thalamic nuclei degeneration in relapsing-remitting and secondary progressive multiple sclerosis: results of neuropsychological and morphometry studies]. Annals of clinical and experimental neurology 2020; 14(3): 21–30. (In Russ.)

DOI: 10.25692/ACEN.2020.3.3

Received 22.11.2019 / Accepted 27.04.2020

Введение

Рассеянный склероз (РС) — хроническое воспалительное демиелинизирующее заболевание, характеризующееся развитием комплекса аутоиммунных и нейродегенеративных процессов [1], приводящих к поражению центральной нервной системы и инвалидизации [2]. Этиопатогенез заболевания рассматривают как сложный иммунопатологический процесс, запускаемый индивидуальной комбинацией генетических, эпигенетических, экзо- и эндогенных факторов, который приводит к демиелинизации и нейродегенерации. Патологический процесс может как развиваться в направлении «с периферии в центральную нервную систему» через Т-клеточные механизмы, так и запускаться в центральной нервной системе посредством формирования эктопических В-клеточных фолликуллов [3-5].

Магнитно-резонансная (MP) морфометрия позволяет изучать метрические параметры структур мозга при нейродегенеративных и демиелинизирующих заболеваниях [6], в частности, при РС, при котором установлены атрофические изменения таламуса [7-13], в некоторых случаях влияющие на неврологические проявления. В 2018 г. было создано программное обеспечение, которое способно оценить изменение в объеме не только всего таламуса, но и его отдельных ядерных групп [14].

С учетом возможного участия таламуса в прогрессировании инвалидизации и когнитивных нарушениях при РС представляется актуальным изучение изменения объема ядерных групп таламуса при ремиттирующем (РРС) и вторично прогрессирующем (ВПРС) типах течения РС.

Цель исследования — изучить структурные изменения таламуса и его субрегионов методом МР-томографии и МРморфометрии и определить их клиническую значимость при РС.

Материалы и методы

Обследовано 68 пациентов с диагнозом PC по критериям McDonald (2017) [15]: с PPC без признаков активности (n = 40) и ВПРС с активностью без признаков прогрессирования (n = 28) [16]. Контроль — 10 здоровых человек соответствующего возраста и пола без неврологических и соматических заболеваний.

У всех больных перед включением в исследование было взято информированное согласие. Работа была утверждена локальным этическим комитетом Военно-медицинской академии им. С.М. Кирова. Все включенные в исследование пациенты продолжали ранее назначенную терапию препаратами, изменяющими течение РС, и находились в состоянии ремиссии на протяжении как минимум 2 мес. В процессе исследования никаких дополнительных лечебных назначений не проводилось.

Всем пациентам выполнен неврологический осмотр с определением балла инвалидизации по шкале EDSS [17], а также проведена оценка агрессивности PC по шкале MSSS [18]. Когнитивные функции определяли как с помощью стандартных нейропсихологических опросников MMSE [19], FAB [20], MoCA [21], так и опросника SDMT (письменный и устный разделы), входящего в состав краткого международного теста оценки когнитивных функций при PC BICAMS [22]. Для оценки психической сферы применялись тест Бека [23] и HADS [24]. Исследуемые характеристики представлены в табл. 1.

Таблица 1. Характеристика обследованных пациентов

Table 1. Characteristics of patients

MP-морфометрическое картирование ядерных групп таламуса с помощью программы «FreeSurfer» с получением объемных характеристик специализированных ядер таламуса

MRI morphometric mapping of the thalamic nuclei using the Free-Surfer software, to establish the dimensions of the specialized thalamic nuclei

Всем пациентам была выполнена МРТ головного мозга на томографе «Siemens Tim Trio» 3 Тл с использованием контрастного усиления, выполнением протоколов T1 градиентного эха (TR 1900 ms, TE 3,41 ms, inversion time 900 ms, flip angle 9, slice thickness 1 mm, voxel size x 1 mm, voxel size y 1 mm, number of slices 176) и последующей постпроцес-

Группа Group	PPC BRMS	BNPC SPMS	p
Количество пациентов Quantity of patients	40	28	
Пол (мужчины/женщины) Gender (male/female)	8/32	7/21	>0,05
Возраст, годы Age, years	31,75 ± 5,96	33,33 ± 5,70	>0,05
Длительность PC, годы Duration of MS, years	2,33 ± 1,50	5,56 ± 4,41	0,036
EDSS	1,54 ± 0,46	4,17 ± 0,85	0,0004
MSSS	3,75 ± 1,58	5,96 ± 1,62	0,024
MMSE	28,75 ± 1,13	27,56 ± 1,70	>0,05
FAB	17,5 ± 0,50	16,11 ± 1,65	>0,05
MoCA	28,42 ± 1,08	26,67 ± 2,23	>0,05
SDMT устный SDMT verbal	57,67 ± 9,39	43,00 ± 8,00	0,018
SDMT письменный SDMT writing	58,00 ± 10,50	48,11 ± 8,98	>0,05
BDI	8,75 ± 3,38	18,67 ± 7,11	0,008
HADS I	4,67 ± 1,72	7,89 ± 2,74	0,027
HADS II	3,83 ± 1,94	9,56 ± 3,38	0,002
HADS общий HADS common	8,50 ± 3,50	17,44 ± 5,72	0,003

синговой обработкой полученных морфометрических данных при помощи алгоритмов программного обеспечения «FreeSurfer 6.0» [25–28].

Процедура морфометрической обработки проходила согласно стандартной процедуре анализа FreeSurfer с последующей обработкой постпроцессинговых изображений специализированным программным скриптом, позволяющим картировать таламус на 25 ядер, основываясь на гистологическом и MP-морфометрическом атласах здоровых добровольцев (рисунок) [14].

Результаты

Первоначально было выполнено сравнение результатов при различных типах течения РС. Выявлены достоверные (p < 0,05) различия между исследуемыми группами по следующим параметрам: длительность заболевания, шкала инвалидизации EDSS, шкала оценки прогрессирования заболевания MSSS, устный раздел теста SDMT, шкала депрессии Бека и все разделы госпитальной шкалы тревоги

и депрессии. Возраст больных с РРС и ВПРС, включенных в исследование, практически не различался (табл. 1).

На первом этапе морфометрического исследования сравнили объемы выделенных ядерных групп таламуса и выявили достоверное снижение объемов ядер подушки таламуса с двух сторон при РРС относительно контроля (табл. 2).

Далее сравнили МР-морфометрические показателей картированных ядерных групп таламуса между группами больных с РС. Снижение объемов ядерных групп при ВПРС в сравнении с РРС было для большинства ядер статистически достоверным, исключая ядра подушки таламуса (табл. 3).

Проведен корреляционный анализ (с использованием критерия Спирмена) морфометрических и клинических данных в общей выборке пациентов с PC.

Обнаружены разнородные связи длительности заболевания с различными ядерными группами таламуса, в то время

Таблица 2. Различия объемов ядерных групп таламуса между группой контроля и пациентами с PPC (M [LQ; UQ])

Table 2. Differences in the size of the thalamic nuclei between the control group and patients with RRMS

Ядерные группы Nuclear groups	Контроль Control	PPC RRMS	р
Левое латеральное коленчатое тело Left lateral geniculate	188,448 [185,400; 201,085]	154,075 [122,188; 182,693]	0,028
Левое переднее ядро подушки Pulvinar left anterior nucleus	229,211 [211,337; 247,466]	186,682 [170,883; 211,326]	0,049
Левое нижнее ядро подушки Pulvinar left posterior nucleus	187,504 [176,385; 203,877]	149,477 [133,299; 174,301]	0,034
Правое медиальное ядро подушки Pulvinar right medial nucleus	1081,361 [997,475; 1144,707]	852,407 [811,181; 971,723]	0,028
Правое медиальное вентральное ядро Right ventral medial nucleus	14,057[12,241;15,034]	11,631 [7,968; 13,149]	0,049
Правое переднее ядро подушки Pulvinar right anterior nucleus	261,648 [239,464; 276,590]	219,594 [199,964; 237,067]	0,041
Правое нижнее ядро подушки Pulvinar right posterior nucleus	240,546 [225,774; 242,428]	187,106 [162,935; 206,656]	0,010
Правое медиальное ядро подушки Pulvinar right medial nucleus	1196,734 [1108,409; 1206,700]	989,698 [885,213; 1090,017]	0,015

Таблица 3. Различия таламических объемов между пациентами с РРС и ВПРС (М [LQ; UQ])

Table 3. Differences in thalamic size between patients with RRMS and SPMS

Структура	PPC	BNPC	р
Structure	RRMS	SPMS	
Левое переднее вентральное ядро	125,765	93,608	0,014
Left anteroventral nucleus	[111,969; 134,548]	[82,062; 122,194]	
Левое центральное медиальное ядро	65,971	54,076	0,042
Left central medial nucleus	[58,623; 68,141]	[46,225; 61,026]	
Левое латеральное дорсальное ядро	31,439	18,154	0,025
Left laterodorsal nucleus	[18,238; 34,663]	[14,491; 22,328]	
Левое латеральное коленчатое ядро	171,097	118,665	0,036
Left lateral geniculate nucleus	[144,762; 186,920]	[87,492; 154,075]	
Левое медиальное коленчатое ядро	119,473	99,891	0,020
Left medial geniculate nucleus	[108,957; 128,80]	[79,916; 111,756]	

как связи со шкалой EDSS были выявлены по отношению только к коленчатым телам слева и ядрам подушки таламуса слева (табл. 4). Достоверных корреляций со шкалой MSSS не получено. Были изучены взаимосвязи когнитивных тестов с объемными показателями субструктур таламуса (табл. 5). Показаны значения только для тех ядер, которые имели корреляционные связи с 2 и более шкалами. Обращает на себя

Таблица 4. Корреляционные связи клинических параметров с различными структурами таламуса у всех пациентов с РС (*p* < 0,05)

Table 4. Correlations between clinical parameters and different thalamic structures in all patients with MS ($p \le 0.05$)

Структура Structure	r
Длительность заболевания	
Левое переднее вентральное ядро Left anteroventral nucleus	-0,588556
Левое центральное медиальное ядро Left central medial nucleus	-0,544844
Левое центральное латеральное ядро Left central lateral nucleus	-0,680664
Левое латеральное дорсальное ядро Left laterodorsal nucleus	-0,655686
Левое латеральное коленчатое тело Left lateral geniculate nucleus	-0,532355
Левое латеральное заднее ядро Left lateral posterior nucleus	-0,558894
Левое медиодорсальное медиальное крупноклеточное ядро Left mediodorsal medial magnocellular nucleus	-0,596362
Левое медиальное вентральное ядро Left medial ventral nucleus	-0,480836
Правое переднее вентральное ядро Right anteroventral nucleus	-0,505815
Правое центральное медиальное ядро Right central medial nucleus	-0,558894
Правое центральное латеральное ядро Right central lateral nucleus	-0,485520
Правое латеральное заднее ядро Right lateral posterior nucleus	-0,616657
Правое медиальное вентральное ядро Right medial ventral	-0,611974
EDSS	
Левое переднее вентральное ядро Left anteroventral nucleus	-0,444211
Левое латеральное коленчатое ядро Left lateral geniculate nucleus	-0,484950
Левое медиальное коленчатое ядро Left medial geniculate nucleus	-0,578963
Левое переднее ядро подушки Left pulvinar anterior nucleus	-0,506886
Левое нижнее ядро подушки Left pulvinar inferior nucleus	-0,469281
Левое медиальное ядро подушки Left pulvinar medial nucleus	-0,546842
Правое медиальное дорсальное мелкоклеточное ядро Right mediodorsal parvocellular nucleus	-0,513154
Правое медиодорсальное медиальное крупноклеточное ядро Right mediodorsal magnocellular nucleus	-0,506103
Правое медиальное ядро подушки Right pulvinar medial nucleus	-0,472415

Том 14 № 3 2020

www.annaly-nevrologii.com

Таблица 5. Корреляционные связи когнитивных параметров с различными структурами таламуса у всех пациентов с PC (p < 0,05)

Table 5. Correlations between cognitive parameters and different thalamic structures in all patients with MS

Структура Structure	rMMSE	rFAB	rMoCA
Левое латеральное коленчатое тело Left lateral geniculate nucleus	0,533		0,743
Левое медиальное коленчатое тело Left medial geniculate nucleus		0,456	0,527
Левое переднее ядро подушки Left pulvinar anterior nucleus		0,537	0,448
Левое нижнее ядро подушки Left pulvinar inferior nucleus	0,482		0,619
Левое медиальное ядро подушки Left pulvinar medial nucleus		0,570	0,607
Правое латеральное коленчатое тело Right lateral geniculate nucleus	0,543		0,480
Правое медиадорсальное мелкоклеточное ядро Right mediodorsal parvocellular nucleus	0,518		0,600
Правое медиадорсальное медиальное крупноклеточное ядро Right mediodorsal medial magnocellular nucleus	0,512	0,451	0,593
Правое медиальное ядро подушки Right pulvinar medial nucleus	0,471		0,494
Правое вентральное переднее ядро Right ventral anterior nucleus		0,478	0,575

Таблица 6. Корреляционные связи данных шкалы SDMT с различными ядерными группами таламуса у всех пациентов с PC (p < 0,05)

Table 6. Correlations between SDMT results and different thalamic nuclei in all patients with MS

Структура Structure	SDMT устный SDMT verbal	SDMT письменный SDMT writing
Левое переднее вентральное ядро Left anteroventral nucleus	0,669	0,648
Левое центральное медиальное ядро Left central medial nucleus	0,559	0,555
Левое центральное латеральное ядро Left central lateral nucleus	0,446	0,551
Левое медиадорсальное мелкоклеточное ядро Left mediadorsal parvocellular nucleus	0,556	0,671
Левое медиадорсальное медиальное крупноклеточное ядро Left mediadorsal medial magnocellular nucleus	0,495	0,503
Левое медиальное вентральное ядро Left medial ventral nucleus	0,537	0,621
Левое переднее ядро подушки Left pulvinar anterior nucleus	0,585	0,686
Левое латеральное ядро подушки Left pulvinar lateral nucleus	0,506	0,654
Левое медиальное ядро подушки Left pulvinar medial nucleus	0,476	0,586
Левое вентральное переднее ядро Left ventral anterior nucleus	0,605	0,716
Левое вентральное переднее латеральное ядро Left ventral lateral anterior nucleus	0,561	0,595
Левое вентральное заднее латеральное ядро Left ventral posterolateral nucleus	0,482	0,517
Объем левого таламуса Left thalamus volume	0,534	0,627
Правое латеральное заднее ядро Right lateral posterior nucleus	0,464	0,554
Правое вентральное заднее латеральное ядро Right ventral posterolateral nucleus	0,451	0,539

внимание определенное сходство полученных результатов с данными корреляционных связей ядерных групп таламуса и шкалы EDSS. Наличие связей со всеми шкалами показало только медиадорсальное медиальное крупноклеточное ядро.

Учитывая особенно высокую чувствительность SDMT теста к выявлению когнитивной дисфункции, результаты корреляционного анализа представлены отдельно (табл. 6). Оба раздела этого теста показали многочисленные связи с ядерными группами таламуса, преимущественно левого. Следует отметить, что среди структур, показавших достоверные корреляции, вновь присутствуют все ядра подушки таламуса.

Обсуждение

Ввиду нейроанатомических особенностей таламус играет важную роль в таких функциях [28], как регуляция сна и бодрствования, памяти, эмоций, сознания, осознанного восприятия запахов, звуков и внимания. Таламус также участвует в регуляции движений глаз и поддержании позы. Такая функциональная значимость объясняется большим количеством ядер, поражением которых можно объяснить некоторые неврологические проявления в составе симптомокомплекса при РС. Сквозь призму данного исследования особое внимание на себя обращают ядра подушки таламуса.

По данным МР-морфометрии ядерных групп таламуса обнаружено достоверное уменьшение объёмов ядер подушек таламуса с двух сторон в группе пациентов с РРС по сравнению с группой контроля. В нейроанатомических исследованиях [39, 40] установлено, что в нижних, боковых и медиальных ядрах подушки таламуса заканчиваются аксоны, идущие от верхних холмов четверохолмия. Однако эфферентные связи этих ядер более разнообразны: латеральное ядро имеет связи с первичным зрительным полем больших полушарий и с задней теменной корой больших полушарий, а медиальное ядро таламуса имеет реципрокные связи с поясной корой, задней теменной, а также с премоторной и префронтальной областями коры больших полушарий. Медиальное ядро, предположительно, является ретранслятором ассоциативной информации [40, 41]. Нижнее ядро таламуса связано с первичной зрительной корой больших полушарий [39]. Из-за особенностей афферентации к функции нижнего, бокового и медиального ядер относят поддержание саккадических и антисаккадических движений глаз, а также регуляции зрительного внимания и фильтрацию релевантной информации. Существует также мнение [41, 42], что подушка таламуса разделяется на вентральную и дорсальную части. Подушка таламуса выполняет функции фиксирования зрительной информации, временной синхронизации получаемой информации, различения лиц и интеграции повествовательных событий, обеспечивающие полное восприятие «визуальной сцены».

При морфометрическом анализе объемов ядер таламуса у пациентов с РРС и ВПРС выявлены достоверные различия в объемах латерального и медиального коленчатых ядер, переднего вентрального и латерального дорсального ядер с левой стороны. Это позволяет предположить возможность более глубокого поражения ядер доминирующего таламуса при ВПРС по сравнению с РРС, учитывая, что все пациенты в исследуемых группах были правшами. При анализе общей выборки всех пациентов с PC не получено достоверных различий между PPC и ВПРС по стандартным шкалам оценки когнитивных функций, вероятно, вследствие относительно низкой чувствительности данных шкал, которые предназначены в основном для выявления деменции при нейродегенеративных заболеваниях. На это указывается и во многих зарубежных публикациях [29–33], авторы которых отмечали, что без определенных модификаций использовать данные шкалы при PC нецелесообразно.

Тест SDMT, напротив, показал высокую чувствительность и воспроизводимость у пациентов с PC [34, 35]. Это позволило включить его, наряду с тестом BVMTR и Калифорнийским тестом 10 слов, в тест BICAMS, который используется в комплексной оценке когнитивных функций в клинических исследованиях новых препаратов для лечения PC. В нашей выборке пациентов тест SDMT показал положительный результат в выявлении когнитивной дисфункции, однако достоверные различия обнаружены только для устного раздела теста. Такие же результаты описаны в другом исследовании, которое обнаружило высокую корреляцию результатов SDMT с атрофией серого вещества и таламуса [35].

При оценке психической сферы положительные корреляции выявлены с опросником депрессии Бэка и госпитальной шкалой тревоги и депрессии при динамическом мониторинге пациентов с PC, что также отмечают авторы, которые использовали эти шкалы при исследовании более 1000 пациентов [31, 36]. Полученные нами данные свидетельствуют о том, что пациенты с ВПРС по сравнению с PPC имели достоверно худшие показатели когнитивной и психической сфер, указывающие на прогрессирование заболевания. Эти результаты корреспондируют с данными других авторов, свидетельствующими о преимуществе шкал оценки депрессии по сравнению с психометрическими шкалами при дифференциации пациентов с различными типами течения PC [37, 38].

При сравнении клинических и МР-морфометрических параметров нами получены корреляции преимущественно средней силы. Длительность заболевания находилась в обратной корреляционной зависимости с объемами латерального и медиального центральных ядер с обеих сторон. В ряде исследований [42, 43] показано, что медиальное центральное ядро ответственно за формирование двигательного ответа индивида на весь спектр раздражителей, а также поддержание активности коры головного мозга. Консолидирование ситуационных и двигательных паттернов обеспечивается через связи латерального и медиального ядер таламуса с гиппокампом, который также участвует в поддержании активности коры.

Степень инвалидизации по EDSS обратно коррелировала с объемами ядер подушки слева и медиальным ядром подушки справа, что свидетельствует об определенной роли данных ядер в патогенезе и нейродегенерации при PC.

Корреляционные связи со всеми когнитивными шкалами обнаружены только у медиадорсального медиального крупноклеточного ядра, что может быть связано с релейными функциями данного ядра и нуждается в подтверждении в дальнейших исследованиях.

Учитывая, что только тест SDMT показал достоверные различия между когнитивным статусом пациентов с PPC и ВПРС, его корреляционные связи с ядерными структурами таламуса анализировались отдельно. Установлено, что при развитии когнитивной дисфункции у пациентов с РС одну из ведущих ролей играют ядра подушки левого таламуса и общий объем левого таламуса.

Перечисленные выше изменения нельзя объяснить с позиций возрастной нейродегенерации, т.к. все пациенты, участвующие в исследовании, имели схожий возраст, не превышающий 40 лет.

Таким образом, установлена роль ядер таламуса в процессах нейродегенерации и прогрессирования при РС. Раз-

Список литературы

1. Lassmann H., Brück W., Lucchinetti C.F. The immunopathology of multiple sclerosis: an overview. *Brain Pathol* 2007; 17: 210–218. DOI: 10.1111/j.1750-3639.2007.00064.x. PMID: 17388952

2. Lucchinetti C., Brück W., Parisi J. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47: 707-717. DOI: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q. PMID:10852536.

3. Lucchinetti C.F., Popescu B.F., Bunyan R.F. et al. Inflammatory cortical demyelination in early multiple sclerosis. *N Engl J Med* 2011; 365: 2188–2197. DOI: 10.1056/NEJMoa1100648. PMID: 22150037.

4. Бойко А.Н., Бойко О.В., Гусев Е.И. Выбор оптимального препарата для патогенетического лечения рассеянного склероза: современное состояние проблемы (обзор литературы). Журнал неврологии и психиатрии им. С.С. Корсакова 2014; 114(10-2): 77-91.

5. Поздняков А.В., Бисага Г.Н., Гайкова О.Н. и др. Рассеянный склероз: от морфологии к патогенезу. СПб., 2015. 104 с.

6. Whitwell J.L., Jack C.R.Jr., Boeve B.F. et al. Voxel-based morphometry pat-terns of atrophy in FTLD with mutations in MAPT or PGRN. *Neurology* 2009; 72: 813–820. DOI: 10.1212/01.wnl.0000343851.46573.67. PMID: 19255408.

7. Tao G., Datta S., He R. et al. Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry. *J Neurol Sci* 2009; 282: 39–46. DOI: 10.1016/j. jns.2008.12.035. PMID: 19168189.

8. Matías-Guiu J.A., Cortés-Martínez A., Montero P. et al. Identification of cortical and subcortical correlates of cognitive performance in multiple sclero-sis using voxel-based morphometry. *Front Neurol* 2018; 9: 920. DOI: 10.3389/ fneur.2018.00920. PMID: 30420834.

9. Bergsland N., Horakova D., Dwyer M.G. et al. Gray matter atrophy patterns in multiple sclerosis: a 10-year source-based morphometry study. Neuroimage Clin 2017; 17: 444-451. DOI: 10.1016/j.nicl.2017.11.002. PMID: 29159057.

10. Louapre C., Govindarajan S.T., Giannì C. et al. Heterogeneous pathological processes account for thalamic degeneration in multiple sclerosis: insights from 7 T imaging. *MultScler* 2018; 24: 1433–1444. DOI: 10.1177/1352458517726382. PMID: 28803512.

11. Minagar A., Barnett M.H., Benedict R.H.B. et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. *Neurology* 2013; 80: 210–219. DOI: 10.1212/WNL.0b013e31827b910b. PMID: 23296131.

12. Кротенкова И.А., Брюхов В.В., Переседова А.В., Кротенкова М.В. Атро фия центральной нервной системы при рассеянном склерозе: данные МРТморфометрии. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски 2014; 114(10): 50-56.

13. Кротенкова И.А., Брюхов В.В., Захарова М.Н. и др. Атрофия головного и спинного мозга у пациентов с ремиттирующим рассеянным склерозом: 3-летнее динамическое исследование. Лучевая диагностика и терапия

308: 5-JIETHEE JUHAMURECKOE UCCJEGOBAHUE. JPyleeda oudzhocmuka u mepanuka 2017; (1): 35–39. DOI: 10.22328/2079-5343-2017-1-35-39.
14. Iglesias J.E., Insausti R., Lerma-Usabiaga G. et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. *Neuroimage* 2018; 183: 314–326. DOI: 10.1016/j.neuroimage.2018.08.012. PMID: 30121337.
15. Thompson A.J., Banwell B.L., Barkhof F. et al. Diagnosis of multiple sclero-in 2017. This provide methation of the Machine Interime. *J Neurol 2018*: 172140. 172

sis: 2017 revisions of the McDonald criteria. *Lancet Neurol* 2018; 17: 162–173. DOI: 10.1016/S1474-4422(17)30470-2. PMID: 29275977.

16. Lubin F.D., Reingold S.C., Cohen J.A. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. *Neurology* 2014; 83: 278–86. DOI: 10.1212/WNL.00000000000560. PMID: 24871874.

17. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). *Neurology* 1983; 33: 1444–1452. DOI: 10.1212/wnl.33.11.1444. PMID: 6685237.

18. Roxburgh R.H.S.R., Seaman S.R., Masterman T. et al. Multiple sclerosis severity score: using disability and disease duration to rate disease severity. *Neurology* 2005; 64: 1144–1151. DOI: 10.1212/01.WNL.0000156155.19270.F8. PMID: 15824338.

меры ядер таламуса были достоверно снижены при ВПРС в сравнении с РРС и коррелировали со степенью тяжести по EDSS, длительностью заболевания и нейропсихологическими шкалами, особенно SDMT. Среди всех ядер таламуса наибольшая степень дегенерации отмечена в медиадорсальном медиальном ядре.

Полученные данные свидетельствуют о высокой значимости атрофии ядер таламуса в прогрессировании инвалидизации и когнитивных нарушений при РС. МР-морфометрия ядер таламуса может рассматриваться как важный маркер и предиктор прогрессирования РС.

References

1. Lassmann H., Brück W., Lucchinetti C.F. The immunopathology of multiple sclerosis: an overview. Brain Pathol 2007; 17: 210-218. DOI: 10.1111/j.1750-3639.2007.00064.x. PMID: 17388952

2. Lucchinetti C., Brück W., Parisi J. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47:707–717. DOI: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q. PMID:1082536.

3. Lucchinetti C.F., Popescu B.F., Bunyan R.F. et al. Inflammatory cortical demyelination in early multiple sclerosis. *N Engl J Med* 2011; 365: 2188–2197. DOI: 10.1056/NEJMoa1100648. PMID: 22150037.

4. Boyko A.N., Boyko O.V., Gusev E.I. [The choice of the optimal drug for pathogenic treatment of multiple sclerosis: a current state of the problem (a review)]. *Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova.* 2014; 114(10-2): 77-91. (In Russ.)

5. Pozdnyakov A.V., Bisaga G.N., Gaikova O.N. et al. [Multiple sclerosis: from

b) FO2dilyakov A.V., Bisaga G.N., Gaikova O.N. et al. [Multiple schools: from morphology to pathogenesis]. St. Petersburg, 2015. 104 p. (In Russ.)
 6. Whitwell J.L., Jack C.R.Jr., Boeve B.F. et al. Voxel-based morphometry pat-terns of atrophy in FTLD with mutations in MAPT or PGRN. *Neurology* 2009; 72: 813–820. DOI: 10.1212/01.wnl.0000343851.46573.67. PMID: 19255408.

7. Tao G., Datta S., He R. et al. Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry. *J Neurol Sci* 2009; 282: 39–46. DOI: 10.1016/j. jns.2008.12.035. PMID: 19168189.

8. Matías-Guiu J.A., Cortés-Martínez A., Montero P. et al. Identification of cortical and subcortical correlates of cognitive performance in multiple sclero-sis using voxel-based morphometry. *Front Neurol* 2018; 9: 920. DOI: 10.3389/ fneur.2018.00920. PMID: 30420834.

9. Bergsland N., Horakova D., Dwyer M.G. et al. Gray matter atrophy patterns in multiple sclerosis: a 10-year source-based morphometry study. Neuroimage Clin 2017; 17: 444-451. DOI: 10.1016/j.nicl.2017.11.002. PMID: 29159057.

10. Louapre C., Govindarajan S.T., Giannì C. et al. Heterogeneous pathological processes account for thalamic degeneration in multiple sclerosis: insights from 7 T imaging. *MultScler* 2018; 24: 1433–1444. DOI: 10.1177/1352458517726382. PMID: 28803512.

11. Minagar A., Barnett M.H., Benedict R.H.B. et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. *Neurology* 2013; 80: 210–219. DOI: 10.1212/WNL.0b013e31827b910b. PMID: 23296131.

12. Krotenkova I.A., Bryukhov V.V., Peresedova A.V., Krotenkova M.V. [Central nervous system atrophy in multiple sclerosis: MRI morphometry data]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. Spetzvypuski 2014; 114(10): 50-56. (In Russ.)

13. Krotenkova I.A., Bryukhov V.V., Zakharova M.N. et al. [Brain and spine atrophy in relapsing remitting multiple sclerosis: a 3-year follow up study]. Luchevaya diagnostika i terapiya 2017; (1): 35–39. DOI: 10.22328/2079-5343-2017-1-35-39. (In Russ.)

14. Iglesias J.E., Insausti R., Lerma-Usabiaga G. et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. *Neuroimage* 2018; 183: 314–326. DOI: 10.1016/j.neuroimage.2018.08.012. PMID: 30121337.
15. Thompson A.J., Banwell B.L., Barkhof F. et al. Diagnosis of multiple sclero-in 2017 artisticare fatts MacDanal desire for an extension of the 172.

Inompson A.S., Bankon D.E., Barkton J.C. an Diagnosis of interpresence sis: 2017 revisions of the McDonald criteria. *Lancet Neurol* 2018; 17: 162–173. DOI: 10.1016/S1474-4422(17)30470-2. PMID: 29275977.
 Lublin F.D., Reingold S.C., Cohen J.A. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. *Neurology* 2014; 83: 278–86. DOI: 10.1212/WNL.000000000000560. PMID: 24871874.

17. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). *Neurology* 1983; 33: 1444–1452. DOI: 10.1212/wnl.33.11.1444. PMID: 6685237.

18. Roxburgh R.H.S.R., Seaman S.R., Masterman T. et al. Multiple sclerosis severity score: using disability and disease duration to rate disease severity. *Neurology* 2005; 64: 1144–1151. DOI: 10.1212/01.WNL.0000156155.19270.F8. PMID: 15824338.

19. Folstein M.F., Folstein S.E., McHugh P.R. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res* 1975; 12: 189–198. DOI: 10.1016/0022-3956(75)90026-6. PMID: 1202204. 20. Dubois B., Slachevsky A., Litvan I., Pillon B. The FAB: a Frontal Assessment Battery at bedside. *Neurology* 2000; 55: 1621–1626. DOI: 10.1212/ wnl.55.11.1621. PMID: 11113214.

21. Nasreddine Z.S., Phillips N.A., Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695–699. DOI: 10.1111/j.1532-5415.2005.53221.x. PMID: 15817019

22. Langdon D.W., Amato M.P., Boringa J. et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). *MultScler* 2012; 18: 891–898. DOI: 10.1177/1352458511431076. PMID: 22190573.

23. Beck A.T., Ward C.H., Mendelson M. et al. An inventory for measuring depression. *Arch Gen Psychiatry* 1961; 4: 561–571. DOI: 10.1001/arch-psyc.1961.01710120031004. PMID: 13688369.

24. Zigmond A.S., Snaith R.P. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983; 67: 361–370. DOI: 10.1111/j.1600-0447.1983.tb09716.x. PMID: 6880820.

25. Assaf Y., Pasternak O. Diffusion Tensor Imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008; 34: 51-61. DOI: 10.1007/s12031-007-0029-0. PMID: 18157658.

O'Donnell L.J., Westin C.F. An introduction to diffusion tensor image analysis. *Neurosurg Clin N Am* 2011; 22: 185–196. DOI: 10.1016/j.nec.2010.12.004. PMID: 21435570.

27. Alexander A.L., Lee J.E., Lazar M., Field A.S. Diffusion tensor imaging of the brain. *Neurotherapeutics* 2007; 4: 316–329. DOI: 10.1016/j.nurt.2007.05.011. PMID: 17599699

28. Fischl B. FreeSurfer. Neuroimage 2012; 62: 774-781. DOI: 10.1016/j.neuroimage.2012.01.021. PMID: 22248573.

29. Culpepper L. Neuroanatomy and physiology of cognition. J. Clin. Psychiatry 2015; 76:e900. DOI: 10.4088/JCP.13086tx3c. PMID: 26231020.

30. Beatty W.W., Goodkin D.E. Screening for cognitive impairment in multiple sclerosis: an evaluation of the Mini-Mental State Examination. Arch Neurol 1990; 47: 297-301. DOI: 10.1001/archneur.1990.00530030069018. PMID: 2310313.

31. Creavin S.T., Wisniewski S., Noel-Storr A.H. et al. Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. *Cochrane Database Syst Rev* 2016; (1): CD011145. DOI: 10.1002/14651858.CD011145.pub2. PMID: 26760674

32. Benedict R.H.B., DeLuca J., Enzinger C. et al. Neuropsychology of multiple sclerosis: looking back and moving forward. *J Int Neuropsychol Soc* 2017; 23: 832–842. DOI: 10.1017/S1355617717000959. PMID: 29198279.

33. Charvet L.E., Taub E., Cersosimo B. et al. The Montreal Cognitive Assessment (MoCA) in multiple sclerosis: relation to clinical features. J Mult Scler 2015; 2: 135. DOI: 10.4172/2376-0389.1000135. PMID: 27791389

34. Pirkhaefi A. Evaluation of cognitive abilities of different groups of sclerosis patients and its comparison with healthy people. PCP 2018; 6: 111-118. DOI: 10.292526.2.111.

10.252320.2.111. 35. Estiasari R., Fajrina Y., Lastri D.N. et al. Validity and reliability of Brief In-ternational Cognitive Assessment for Multiple Sclerosis (BICAMS) in Indonesia and the correlation with quality of life. *Neurol Res Int* 2019; 2019: 4290352. DOI: 10.1155/2019/4290352. PMID: 31263596.

36. Greeke E.E., Chua A.S., Healy B.C. et al. Depression and fatigue in pa-tients with multiple sclerosis. *J Neurol Sci* 2017; 380: 236–241. DOI: 10.1016/j. jns.2017.07.047. PMID: 28870578.

37. Jones S.M.W., Salem R., Amtmann D. Somatic symptoms of depression and anxiety in people with multiple sclerosis. Int J MS Care 2018; 20: 145–152. DOI: 38. Ntoskou K., Messinis L., Nasios G. et al. Cognitive and language deficits in

multiple sclerosis: comparison of relapsing remitting and secondary progressive subtypes. *Open Neurol J* 2018; 12: 19–30. DOI: 10.2174/1874205X01812010019. PMID: 29576812.

39. Berman R.A., Wurtz R.H. Functional identification of a pulvinar path from superior colliculus to cortical area MT. *J Neurosci* 2010; 30: 6342–6354. DOI: 10.1523/JNEUROSCI.6176-09.2010. PMID: 20445060.

40. Berman R.A., Wurtz R.H. Signals conveyed in the pulvinar pathway from superior colliculus to cortical area MT. J Neurosci 2011; 31: 373–384. DOI: 10.1523/JNEUROSCI.4738-10.2011. PMID: 21228149.

41. Cappe C., Morel A., Barone P., Rouiller E.M. The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimo-tor interplay. *Cereb Cortex* 2009; 19: 2025–2037. DOI: 10.1093/cercor/bhn228. PMID: 19150924.

42. Arcaro M.J., Pinsk M.A., Chen J., Kastner S. Organizing principles of pulvino-cortical functional coupling in humans. *Nat Commun* 2018; 9: 5382. DOI: 10.1038/s41467-018-07725-6. PMID: 30568159.
43. Van der Werf Y.D., Witter M.P., Groenewegen H.J. The intralaminar and midling nuclei of the thelomy. A patronical and functional avidance for participation.

midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. *Brain Res Brain Res Rev* 2002; 39: 107–140. DOI: 10.1016/s0165-0173(02)00181-9. PMID: 12423763.

19. Folstein M.F., Folstein S.E., McHugh P.R. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res* 1975; 12: 189–198. DOI: 10.1016/0022-3956(75)90026-6. PMID: 1202204. 20. Dubois B., Slachevsky A., Litvan I., Pillon B. The FAB: a Frontal Assessment Battery at bedside. *Neurology* 2000; 55: 1621–1626. DOI: 10.1212/wnl.55.11.1621. PMID: 11113214.

21. Nasreddine Z.S., Phillips N.A., Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695–699. DOI: 10.1111/j.1532-5415.2005.53221.x. PMID: 15817019.

22. Langdon D.W., Amato M.P., Boringa J. et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). *MultScler* 2012; 18: 891–898. DOI: 10.1177/1352458511431076. PMID: 22190573.

23. Beck A.T., Ward C.H., Mendelson M. et al. An inventory for measur-ing depression. *Arch Gen Psychiatry* 1961; 4: 561–571. DOI: 10.1001/arch-psyc.1961.01710120031004. PMID: 13688369.

24. Zigmond A.S., Snaith R.P. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983; 67: 361–370. DOI: 10.1111/j.1600-0447.1983.tb09716.x. PMID: 6880820.

25. Assaf Y., Pasternak O. Diffusion Tensor Imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008; 34: 51-61. DOI: 10.1007/s12031-007-0029-0. PMID: 18157658.

O'Donnell L.J., Westin C.F. An introduction to diffusion tensor image analysis. *Neurosurg Clin N Am* 2011; 22: 185–196. DOI: 10.1016/j.nec.2010.12.004.
 PMID: 21435570.

27. Alexander A.L., Lee J.E., Lazar M., Field A.S. Diffusion tensor imaging of the brain. *Neurotherapeutics* 2007; 4: 316–329. DOI: 10.1016/j.nurt.2007.05.011. PMID: 17599699.

28. Fischl B. FreeSurfer. *Neuroimage* 2012; 62: 774–781. DOI: 10.1016/j.neuro-image.2012.01.021. PMID: 22248573.

29. Culpepper L. Neuroanatomy and physiology of cognition. J. Clin. Psychiatry 2015; 76:e900. DOI: 10.4088/JCP.13086tx3c. PMID: 26231020.

30. Beatty W.W., Goodkin D.E. Screening for cognitive impairment in multiple sclerosis: an evaluation of the Mini-Mental State Examination. Arch Neurol 1990; 47: 297–301. DOI: 10.1001/archneur.1900.0053003069018. PMID: 2310313. 31. Creavin S.T., Wisniewski S., Noel-Storr A.H. et al. Mini-Mental State Exami-

nation (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. *Cochrane Data-base Syst Rev* 2016; (1): CD011145. DOI: 10.1002/14651858.CD011145.pub2. PMID: 26760674

32. Benedict R.H.B., DeLuca J., Enzinger C. et al. Neuropsychology of multiple sclerosis: looking back and moving forward. J Int Neuropsychol Soc 2017; 23: 832-842. DOI: 10.1017/S1355617717000959. PMID: 29198279.

33. Charvet L.E., Taub E., Cersosimo B. et al. The Montreal Cognitive Assess-ment (MoCA) in multiple sclerosis: relation to clinical features. *J Mult Scler* 2015; 2: 135. DOI: 10.4172/2376-0389.1000135. PMID: 27791389.

34. Pirkhaefi A. Evaluation of cognitive abilities of different groups of sclerosis patients and its comparison with healthy people. PCP 2018; 6: 111-118. DOI: 10.292526.2.111.

35. Estiasari R., Fajrina Y., Lastri D.N. et al. Validity and reliability of Brief In-ternational Cognitive Assessment for Multiple Sclerosis (BICAMS) in Indonesia and the correlation with quality of life. *Neurol Res Int* 2019; 2019: 4290352. DOI: 10.1155/2019/4290352. PMID: 31263596.

36. Greeke E.E., Chua A.S., Healy B.C. et al. Depression and fatigue in pa-tients with multiple sclerosis. *J Neurol Sci* 2017; 380: 236–241. DOI: 10.1016/j. jns.2017.07.047. PMID: 28870578.

37. Jones S.M.W., Salem R., Amtmann D. Somatic symptoms of depression and anxiety in people with multiple sclerosis. Int J MS Care 2018; 20: 145-152. DOI: 10.7224/1537-2073.2017-069. PMID: 29896052.
 Ntoskou K., Messinis L., Nasios G. et al. Cognitive and language deficits in

subtypes. *Open Neurol J* 2018; 12: 19–30. DOI: 10.2174/1874205X01812010019. PMID: 29576812.

39. Berman R.A., Wurtz R.H. Functional identification of a pulvinar path from superior colliculus to cortical area MT. *J Neurosci* 2010; 30: 6342–6354. DOI: 10.1523/JNEUROSCI.6176-09.2010. PMID: 20445060.

40. Berman R.A., Wurtz R.H. Signals conveyed in the pulvinar pathway from superior colliculus to cortical area MT. J Neurosci 2011; 31: 373-384. DOI: 10.1523/JNEUROSCI.4738-10.2011. PMID: 21228149.

41. Cappe C., Morel A., Barone P., Rouiller E.M. The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimo-tor interplay. *Cereb Cortex* 2009; 19: 2025–2037. DOI: 10.1093/cercor/bhn228. PMID: 19150924

42. Arcaro M.J., Pinsk M.A., Chen J., Kastner S. Organizing principles of pul-vino-cortical functional coupling in humans. *Nat Commun* 2018; 9: 5382. DOI: 10.1038/s41467-018-07725-6. PMID: 30568159.
43. Van der Werf Y.D., Witter M.P., Groenewegen H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation.

pation in processes of arousal and awareness. *Brain Res Brain Res Rev* 2002; 39: 107–140. DOI: 10.1016/s0165-0173(02)00181-9. PMID: 12423763.

www.annalv-nevrologii.com

Информация об авторах

Труфанов Артём Геннадьевич — д.м.н., доцент, преподаватель кафедры нервных болезней ФГБВОУ ВО ВМА им. С.М. Кирова, Санкт-Петербург, Россия Бисаса Геннадий Николаевич — д.м.н., проф., проф. каф. неврологии и пси-хиатрии ФГБУ НМИЦ им. В.А. Алмазова, Санкт-Петербург, Россия

Скулябин Дмитрий Игоревич — к.м.н., ст. преподаватель каф. нервных бо-лезней ФГБВОУ ВО ВМА им. С.М. Кирова, Санкт-Петербург, Россия Тёмный Александр Васильевич — курсант ФГБВОУ ВО ВМА им. С.М. Ки-

рова, Санкт-Петербург, Россия

Ирин Антон Алексеевич — к.м.н., преподаватель каф. нервных болезней ФГБВОУ ВО ВМА им. С.М. Кирова, Санкт-Петербург, Россия

Попляк Мария Олеговна — врач-невролог каф. нервных болезней ФГБВОУ ВО ВМА им. С.М. Кирова, Санкт-Петербург, Россия

Полтавский Илия Дмитриевич — аспирант каф. нервных болезней ФГБВОУ ВО ВМА им. С.М. Кирова, Санкт-Петербург, Россия

Литвиненко Игорь Вячеславович — д.м.н., проф., нач. каф. нервных болез-ней ФГБВОУ ВО ВМА им. С.М. Кирова, Санкт-Петербург, Россия

Одинак Мирослав Михайлович — д.м.н., проф., член-корр. РАН, проф. каф. нервных болезней ФГБВОУ ВО ВМА им. С.М. Кирова», Санкт-Петербург, Россия

Тарумов Дмитрий Андреевич — д.м.н., доц., преподаватель каф. рент-генологии и радиологии ФГБВОУ ВО ВМА им. С.М. Кирова», Санкт-Петербург, Россия

Information about the authors

Artem G. Trufanov - D. Sci. (Med.), Assoc. Prof., lecturer, Department of neu-Gennadiy N. Bisaga – D. Sci. (Med.), Prof., Department of neurology and

psychiatry, V.A. Almazov National Medical Research Centre, St. Petersburg, Russia

Dmitriy I. Skulyabin – PhD (Med.), senior lecturer, Department of neurology, S.M. Kirov Military Medical Academy, St. Petersburg, Russia *Alexandr V. Tyomniy* – cadet, S.M. Kirov Military Medical Academy, St. Pe-

tersburg, Russia

Anton A. Yurin – PhD (Med.), lecturer, Department of neurology, S.M. Kirov Military Medical Academy, St. Petersburg, Russia

Maria O. Poplyak - neurologist, Department of neurology, S.M. Kirov Military Medical Academy, St. Petersburg, Russia;

Iliya D. Poltavskiy, neurologist at the Department of Neurology, S.M. Kirov Mili-

Iliya D. Poltavskiy, neurologist at the Department of Neurology, S.M. KIROV MILI-tary Medical Academy, St. Petersburg, Russia Igor V. Litvinenko – D. Sci. (Med.), Prof., Head, Neurology department, S.M. Kirov Military Medical Academy, St. Petersburg, Russia Miroslav M. Odinak – D. Sci. (Med.), Prof., Corr. Member of the Russian Aca-demy of Sciences, Professor, Department of neurology, S.M. Kirov Military Medical Academy, St. Petersburg, Russia

Dmitriy A. Tarumov - D. Sci. (Med.), lecturer, Department of roentgenology and radiology, S.M. Kirov Military Medical Academy, St. Petersburg, Russia