Наследственные нейродегенерации с накоплением железа в мозге

Обложка


Цитировать

Полный текст

Аннотация

Нейродегенерации с накоплением железа в мозге (ННЖМ) – клинически и генетически гетерогенная группа наследственных (преимущественно аутосомно-рецессивных) прогрессирующих болезней ЦНС с общим признаком – накоплением железа в базальных ганглиях, дающим характерную картину при нейровизуализации. В настоящее время идентифицировано 9 генов, связанных с разными ННЖМ, часть из этих генов обусловливают развитие несколько аллельных фенотипов. В обзоре суммированы современные клинические и молекулярно-генетические данные о ННЖМ, особенно о новых формах и атипичных клинических вариантах.

Об авторах

Галина Евгеньевна Руденская

ФГБНУ «Медико-генетический научный центр имени Н.П. Бочкова»

Автор, ответственный за переписку.
Email: rudenskaya@med-gen.ru
Россия, Москва

E. Ю. Захарова

ФГБНУ «Медико-генетический научный центр имени Н.П. Бочкова»

Email: rudenskaya@med-gen.ru
Россия, Москва

Список литературы

  1. Захарова Е.Ю., Руденская Г.Е. Новая форма наследственной дегенерации с накоплением железа в мозге: клинические и молекулярно-генетические характеристики. Журн. неврол. психиатр. им. С.С.Корсакова (в печати).
  2. Руденская Г.Е., Захарова Е.Ю., Поляков А.В. Наследственные болезни нервной системы с двигательными расстройствами: «новые» формы, редкие фенотипы, молекулярная диагностика. В кн.: Болезнь Паркинсона и расстройства движений. Рук-во для врачей по материалам II Национального конгресса (под ред. С.Н. Иллариошкина, О.С. Левина). М., 2011: 286–294.
  3. Aggarwal A., Schneider S., Houlden H. et al. Indian-subcontinent NBIA: unusual phenotypes, novel PANK2 mutations, and undetermined genetic forms. Mov. Disord. 2010; 25: 1424–1431.
  4. Alazami A., Al-Saif A., Al-Semari A. et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am. J. Hum. Genet. 2008; 83: 684–691.
  5. Alazami A., Schneider S., Bonneau D. et al. C2orf37 mutational spectrum in Woodhouse-Sakati syndrome patients. Clin. Genet. 2010; 78: 585–590.
  6. Antonini A., Goldwurm S., Benti R. et al.Genetic, clinical, and imaging characterization of one patient with late-onset, slowly progressive, pantothenate kinase-associated neurodegeneration. Mov. Disord. 2006; 21: 417–418.
  7. Ben-Omran T., Ali R., Almureikhi M. et al. Phenotypic heterogeneity in Woodhouse-Sakati syndrome: two new families with a mutation in the C2orf37 gene. Am. J. Med. Genet. 2011; 155A: 2647–2653.
  8. Bras J., Verloes A., Schneider S. et al. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid lipofuscinosis. Hum. Molec. Genet. 2012; 12: 2646–2650.
  9. Chang M., Hung W., Liao Y. et al. Eye of the tiger-like MRI in
  10. parkinsonian variant of multiple system atrophy. J. Neural Transmis. 2009; 116: 861–866.
  11. Chiapparini L., Savoiardo M., D’Arrigo S. et al. The “eye-of-the-tiger” sign may be absent in the early stages of classic pantothenate kinase associated neurodegeneration. Neuropediatrics 2011; 42: 159–162.
  12. Chien H., Bonifani V., Barbosa E. ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov. Disord. 2011; 26: 1364–1365.
  13. Ching K., Westaway S., Gitschier J. et al. HARP syndrome is allelic with pantothenate kinase-associated neurodegeneration. Neurology 2002; 58: 1673–1674.
  14. Chinnery P. Neuroferritinopathy. GeneReviews. http://www.ncbi.nlm.nih.gov/books/NBK1141.
  15. Chinnery P., CromptonD., Birchall D. et al. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460insA mutation. Brain 2007; 130: 110–119.
  16. Chung S., Lee J., Lee M. et al. Focal hand dystonia in a patient with PANK2 mutations. Mov. Disord. 2008; 23: 466–468.
  17. Curtis A., Fey C., Morris C. et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat. Genet. 2001; 28:350–354.
  18. del Valle-López P., Pérez-García R., Sanguino-Andrés R., González-Pablos E. Adult onset Hallervorden-Spatz disease with psychotic symptoms. Actas Esp. Psiquiat. 2011; 39: 260–262.
  19. Deschauer M., Gaul C., Behrmann C. et al. C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. J. Neurol. 2012; 259: 2434–2439.
  20. Dezfouli M., Alavi A., Rohani M. et al. PANK2 and C19orf12 mutations are common causes of neurodegeneration with brain iron accumulation. Mov. Disord. 2013; 28: 228–232.
  21. Diaz N. Late Onset Atypical Pantothenate-Kinase-Associated Neurodegeneration. Case Rep. Neurol. Med. 2013; 2013: 860201.
  22. Dick K., Al-Mjeni R., Baskir W. et al. A novel locus for an autosomal recessive hereditary spastic paraplegia (SPG35) maps to 16q21-q23. Neurology 2008; 71: 248–252.
  23. Di Fonzo A., Chien H., Socal M. et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 2007; 68: 1557–1562.
  24. Dogu O., Krebs C., Kaleagasi H. et al. Rapid disease progression in adult-onset mitochondrial membrane protein-associated neurodegeneration. Clin. Genet. 2012; Dec 20. doi: 10.1111/cge.12079 [Epub ahead of print].
  25. Dusek P., Schneider S. Neurodegeneration with brain iron accumulation. Curr. Opin. Neurol. 2012; 25: 499–506.
  26. Edvardson S., Hama H., Shaag A. et al. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am. J. Hum. Genet. 2008; 83: 643–648.
  27. Eiberg H., Hansen L., Korbo L. et al. Novel mutation in ATP13A2 widens the spectrum of Kufor-Rakeb syndrome (PARK9). Clin. Genet. 2012; 82: 256–263.
  28. Fekete R. Late Onset Neurodegeneration with Brain-Iron Accumulation Presenting as Parkinsonism. Case Rep. Neurol. Med.2012; 387095.
  29. Fong C., Rolfs A., Schwarzbraun T. et al. Juvenile parkinsonism associated with heterozygous frameshift ATP13A2 gene mutation. Eur. J. Paediat. Neurol. 2011; 15: 271–275.
  30. Garone C., Pippucci T., Cordelli D. et al. FA2H-related disorders: a novel c.270+3A>T splice-site mutation leads to a complex neurodegenerative phenotype. Dev. Med. Child Neurol. 2011; 53: 958–961.
  31. Gregory A., Hayflick S. Neurodegeneration with Brain Iron Accumulation Disorders Overview. GeneReviews http://www.ncbi.nlm.nih.gov/books/NBK121988/
  32. Gregory A., Westaway S., Holm I. et al. Neurodegeneration associated with genetic defects in phospholipase (2). Neurology 2008; 71: 1402–1409.
  33. Gui Y.X., Xu Z.P., Wen-Lu et al. Four novel rare mutations of PLA2G6 in Chinese population with Parkinson’s disease. Parkinsonism Relat. Disord. 2013; 19: 21–26.
  34. Haack T., Hogarth P., Kruer M. et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 2012; 91:1144–1149.
  35. Hartig M., Hörtnagel K., Garavaglia B. et al. Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann. Neurol. 2006; 59: 248–256.
  36. Hartig M., Iuso A., Haack T. et al. Absence of an Orphan Mitochondrial protein, C19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 2011; 89: 543–550.
  37. Hayflick S., Kruer M., Gregory A. et al. Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain 2013; 136: 1708-1717.
  38. Hider R., Roy S., Ma Y. et al. The potential application of iron chelators for the treatment of neurodegenerative diseases. Metallomic 2011; 3: 239–249.
  39. Hogarth P., Gregory A., Kruer M. et al. New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 2013; 80: 268–275.
  40. Horvath R., Holnski-Feder E., Neeve V. et al. A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Mov. Disord. 2012; 27: 789–793.
  41. Houlden H., Lincoln S., Farrer M. et al. Compound heterozygous PANK2 mutations confirm HARP and Hallervorden-Spatz syndromes are allelic. Neurology 2003; 61: 1423–1426.
  42. Human Gene Mutation Database (HGMD) http://www.hgmd.cf.ac.uk/ac/
  43. Keogh M., Chinnery P. Current concepts and controversies in neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 51–56.
  44. Keogh M., Jonas P., Coulthard A. et al. Neuroferritinopathy: a new inborn error of iron metabolism. Neurogenetics 2012; 13: 93–96.
  45. Kojovic M., Pareés I., Lampreia T. et al. The syndrome of deafnessdystonia:Clinical and genetic heterogeneity. Mov. Disord. 2013; 28:795–803.
  46. Kruer M., Gregory A., Haflick S. Fatty Acid Hydroxylase-Associated Neurodegeneration. GeneReviews http://www.ncbi.nlm.nih.gov/books/NBK56080
  47. Kruer M., Paisán-Ruiz C., Boddaert N. et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann. Neurol. 2010; 68: 611–618.
  48. Kubota A., Hida A., Ichikawa Y. et al. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy. Description of clinical features and implications for genotypephenptype correlations. Mov. Disord. 2008; 24: 441–445.
  49. Kumar N., Boes C., Babovic-Vuksanovic D., Boeve B. The “Eye-ofthe-Tiger” sign is not pathognomonic of the PANK2 mutation. Arch. Neurol. 2006; 63: 292–293.
  50. Kurian M., Morgan N., McPherson L. et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 2008; 70: 623–629.
  51. Lai H., Lin C., Wu R. Early-onset autosomal-recessive parkinsonian-pyramidal syndrome. Acta Neurol. Taiwan 2012; 21: 99–107.
  52. Leoni V., Strittmatter L., Zorzi G. et al. Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol. Genet. Metab. 2012; 105: 463–471.
  53. Lin C., Tan E., Chen M. et al. Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 2008; 71:1727–1732.
  54. Lu C., Lai S., Wu R. et al. PLA2G6 mutations in PARK14-linked young-onset parkinsonism and sporadic Parkinson’s disease. Am. J. Med. Genet. 2012; 159B: 183–191.
  55. Mak C., Sheng B., Lee H. et al. Young-onset parkinsonism in a Hong Kong Chinese man with adult-onset Hallervorden-Spatz syndrome. Int. J. Neurosci. 2011; 121: 224–227.
  56. McNeill A., Pandolfo M., Kuhn J. et al. The neurological presentation of ceruloplasmin gene mutations. Eur. Neurol. 2008; 60: 200–205.
  57. Morgan N., Westaway S., Morton J. et al. PLA2G6, encoding a phospholipase, A2 is mutated in neurodegenerative disorders with high brain iron. Nat. Genet. 2006; 38: 752–754.
  58. Nicholas A., Earnst K., Marson D. Atypical Hallervorden-Spatz disease with preserved cognition and obtrusive obsessions and compulsions. Mov. Disord. 2005; 20: 880–886.
  59. Ogimoto M., Anzai A., Takenoshita H. et al. Criteria for early identification of aceruloplasminemia. Intern. Med. 2011; 50: 1415–1418.
  60. Ohta E. Clinical feature of neuroferritinopathy. Rinsho Shinkeigaku 2012; 52: 951–954.
  61. Ondo W., Adam O., Jankovic J., Chinnery P. Dramatic response of facial stereotype/tic to tetrabenazine in the first reported cases of neuroferritinopathy in the United States. Mov. Disord. 2010; 25: 2470–2472.
  62. Oner O., Oner P., Deda G. et al. Psychotic disorder in a case with Hallervorder-Spatz disease. Acta Psychiat. Scand. 2003; 108: 394–397.
  63. On-line Mendelian Inheritance in Man (OMIM) http://www.ncbi.nlm.nih.gov/omim
  64. Paisán-Ruiz C., Bhatia K., Li A. et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 2009; 65:19–23.
  65. Panteghini C., Zorzi G., Venco P. et al. C19orf12 and FA2H mutations are rare in Italian patients with neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 75–81.
  66. Patil P., Manakshe G., Mahajan D. et al. Neurodegeneration with brain iron accumulation – late-onset slowly progressive variant. J. Assoc. Physicians India 2011; 59: 319–321.
  67. Pellecchia M., Valente E., Cif L. et al. The diverse phenotype and genotype of pantothenate kinase-associated neurodegeneration. Neurology 2005; 64: 1810–1812.
  68. Pierson T., Simeonov D., Sinkan M. et al. Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur. J. Hum. Genet. 2012;20: 476–479.
  69. Pratini N., Sweeters N., Vichinsky E., Neufeld J. Treatment of classic pantothenate kinase-associated neurodegeneration with deferiprone and intrathecal baclofen. Am. J. Phys. Med. Rehabil. 2013; Jan 30 [Epub ahead of print].
  70. Ramirez A., Heimbach A., Grundemann J. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 2006; 38: 1184–1191.
  71. Saitsu H., Nishimura T., Muramatsu K. et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 2013; 45: 445–449.
  72. Santoro L., Breedveld G., Manganelli F. et al. Novel ATP13A2 (PARK9) homozygous mutations in a family with marked intrafamilial variability. Neurogenetics 2011; 12: 33–39.
  73. Schneider S., Bhatia K. Dystonia in the Woodhouse–Sakati syndrome: A new family and literature review. Mov. Disord. 2008; 23: 592–596.
  74. Schneider S., Bhatia K. Syndromes of neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 57–66.
  75. Schneider S., Paisan-Ruiz C., Quinn N. et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov. Disord. 2010; 25: 979–984.
  76. Schottmann G., Stenzel W., Lützkendorf S. et al. A novel frameshift mutation of C19ORF12 causes NBIA4 with cerebellar atrophy and manifests with severe peripheral motor axonal neuropathy. Clin. Genet. 2013; Mar 25 [Epub ahead of print].
  77. Schulte E., Claussen M., Jochim A. et al. Mitochondrial membrane protein associated neurodegeneration: A novel variant of neurodegeneration with brain iron accumulation. Mov. Disord. 2013; 28: 224-227.
  78. Seo J., Song S., Lee P. A Novel PANK2 Mutation in a patient with atypical pantothenate-kinase-associated neurodegeneration presenting with adult-onset parkinsonism. J. Clin. Neurol. 2009; 5: 192–194.
  79. Shah S., Mehta H., Fekete R. Late-onset neurodegeneration with brain iron accumulation with diffusion tensor magnetic resonance imaging. Case Rep. Neurol. 2012; 4: 216–223.
  80. Shi C., Tang B., Wang L. et al. PLA2G6 gene mutation in autosomal recessive early-onset parkinsonism. Neurology 2011; 77: 75–81.
  81. Sina F., Shojaee S., Elahi E., Paisán-Ruiz C. R632W mutation in PLA2G6 segregates with dystonia-parkinsonism in a consanguineous Iranian family. Eur. J. Neurol. 2009; 16: 101–114.
  82. Steindl K., Alazami A., Bhatia K. et al. A novel C2orf37 mutation causes the first Italian cases of Woodhouse Sakati syndrome. Clin. Genet. 2010; 78: 594–597.
  83. Strecker K., Hesse S., Wegner F. et al. Eye of the tiger sign in multiple system atrophy. Eur. J. Neurol. 2007; 14: e1–e2.
  84. Thomas M., Hayflick S., Jankovic J. Clinical heterogeneity of neurodegeneration with brain iron accumulation (Hallervorden-Spatz syndrome) and pantothenate kinase-associated neurodegeneration. Mov. Disord. 2004; 19: 36–42.
  85. Timmermann L., Pauls K., Wieland K. et al. Degeneration with brain iron accumulation. Brain 2010; 133: 701–712.
  86. Vasconcelos O., Harter D., Duffy C. et al. Adult Hallervorden-Spatz simulating amyotrophic lateral sclerosis. Muscle Nerve 2003; 28:118–122.
  87. Yoon W., Lee W., Shin H. et al. Novel PANK2 mutations in Korean patient with panthonenate kinase-associated neurodegeneration presenting unilateral dystonic tremor. Mov. Disord. 2010; 25: 245–247.
  88. Yoshino H., Tomiyama N., Tachibana N. et al. Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 2010; 75: 1356–1361.
  89. Young-Kyung Sunwoo, Jeong-Seop Lee, Won-Hyoung Kim et al. Psychiatric disorder in two siblings with Hallervorden-Spatz disease. Psychiatry Investig. 2009; 6: 226–229.
  90. Zeidman L., Pandey D. Declining use of the Hallervorden-Spatz disease eponym in the last two decades. J. Child Neurol. 2012; 27: 1310-1315.
  91. Zorzi G., Zibordi F., Chapparini L., Nardocci N. Therapeutic advances in neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 82–86.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Rudenskaya G.E., Zakharova E.Y., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах