Новые технологии в экспериментальной нейробиологии: нейронные сети на мультиэлектродной матрице

Обложка


Цитировать

Полный текст

Аннотация

Мультиэлектродная система (Multielectrode Arraуs, или MEA система), регистрирующая in vitro нейронную активность в самоорганизующейся, функционально гетерогенной нейронной сети культивируемых клеток ЦНС, является новой уникальной технологией для выяснения закономерностей формирования межнейронных связей, а также исследования механизмов нейродеструктивных процессов и поиска способов их фармакологической коррекции. Основным преимуществом применения МЕА систем в электрофизиологических экспериментах является возможность длительной (в течение месяцев) неинвазивной регистрации сигналов и стимуляции культивируемых клеток мозга, в сочетании с прижизненной структурной и функциональной визуализацией ионных токов в нейронах и глиальных клетках in vitro с использованием лазерной сканирующей конфокальной микроскопии. Культивирование ткани и клеток мозга на МЕА системах позволяет в хроническом эксперименте тестировать соединения, оказывающие нейротоксический и нейропротекторный эффект. Большой объем и хорошая воспроизводимость получаемых результатов, а также возможность их количественной оценки позволяют отнести нейронные сети, культивируемые на МЕА системах, к биосенсорам, с помощью которых можно проводить эффективный фармакологический скрининг при моделировании in vitro различных форм нейродегенеративных заболеваний, таких, как ишемия, травма, эпилепсия, болезнь Альцгеймера и др.

Об авторах

Ирина Владимировна Мухина

Нижегородская Государственная медицинская академия

Email: haspekleon@mail.ru
Россия, Нижний Новгород

Леонид Георгиевич Хаспеков

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: khaspekleon@mail.ru
Россия, Москва

Список литературы

  1. Мухина И.В., Казанцев В.Б., Хаспеков Л.Г. и др. Мультиэлектродные матрицы – новые возможности в исследовании пластичности нейрональной сети. Совр. технол. в медицине 2009; 1: 6–15.
  2. Ahuja T.K., Mielke J.G., Comas T. et al. Hippocampal slice cultures integrated with multi-electrode arrays: a model for study of long-term drug effects on synaptic activity. Drug Devel. Res. 2007; 68: 84–93.
  3. Baldelli P., Fassio A., Valtorta F., Benfenati F. Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J. Neurosci. 2007; 27: 13520–13531.
  4. Bal-Price A.K., Sunol C., Weiss D.G. et al. Application of in vitro neurotoxicity testing for regulatory purposes: Symposium III summary and research needs. Neurotoxicology 2008; 29: 520–531.
  5. Ban J., Bonifazi P., Pinato G. et al. Embryonic stem cell-derived neurons form functional networks in vitro. Stem Cells 2007; 25: 738–749.
  6. Benilova I., Kuperstein I., Broersen K. et al. MEA neurosensor, the tool for synaptic activity detection: acute amyloid-b oligomers synaptotoxicity study. In: IFMBE Proceedings, O. Dössel and W.C. Schlegel (eds.). Springer, 2009: 314–316.
  7. Brette R., Rudolph M., Carnevale T. et al. Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 2007; 23: 349–398.
  8. Chen Y., Guo C., Lim L. et al. Compact microelectrode array system: tool for in situ monitoring of drug effects on neurotransmitter release from neural cells. Anal. Chem. 2008; 80: 1133–1140.
  9. Chiappalone M., Boveb M., Vato A. et al. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res. 2006; 1093: 41–53.
  10. Chiappalone M., Novellinoa A., Vajda I. et al. Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing 2005; 65–66: 653–662.
  11. Chiappalone M., Vato A., Berdondini L. et al. Network dynamics and synchronous activity in cultured cortical neurons. Int. J. Neur. Syst. 2007; 17: 87–103.
  12. Chiappalone M., Vato A., Tedesco M. et al. Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications. Biosens. Bioelectr. 2003; 18: 627–634.
  13. Chien C.B., Pine J. Voltage-sensitive dye recording of action potentials and synaptic potentials from sympathetic microcultures. Biophys. J. 1991; 60: 697–711.
  14. Egert U. Networks on chips: Spatial and temporal activity dynamics of functional networks in brain slices and cardiac tissue. In: BioMEM, G. Urban (ed.), Springer 2006: 309–349.
  15. Eytan D., Marom S. Dynamics and effective topology underlying synchronization in networks of cortical neurons. J. Neurosci. 2006; 26: 8465–8476.
  16. Gopal K.V., Miller B.R., Gross G.W. Acute and sub-chronic functional neurotoxicity of methylphenidate on neural networks in vitro. J. Neural Transm. 2007; 114: 1365–1375.
  17. Gortz P., Opatz J., Siebler M. et al. Transient reduction of spontaneous neuronal network activity by sublethal amyloid b (1–42) peptide concentrations. Ibid 2009; 116: 351–355.
  18. Gramowski A., Jugelt K., Weiss D.G., Gross G.W. Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. Eur. J. Neurosci. 2004; 19: 2815–2825.
  19. Gross G.W., Harsch A., Rhoades B.K., Gopel W. Odor, drug and toxin analysis with neuronal networks in vitro:extracellular array recording of network responses. Biosens. Bioelectr. 1997; 12: 373–393.
  20. Heikkilä T.J., Ylä-Outinen L., Tanskanen J.M.A. et al. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro. Exp. Neurol. 2009; 218: 109–116.
  21. Hill A.J., Jones N.A., Williams C.M. et al. Development of multielectrode array screening for anticonvulsants in acute rat brain slices. J. Neurosci. Meth. 2010; 185: 246–256.
  22. Hill A.J., Weston S.E., Jones N.A. D9-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia 2010: epub ahead.
  23. Illes S., Fleischer W., Siebler M. et al. Development and pharmacological modulation of embryonic stem cell-derived neuronal network activity. Exp. Neurol. 2007; 207: 171–176.
  24. Illes S., Theiss S., Hartung H.-P. et al. Niche-dependent development of functional neuronal networks from embryonic stem cellderived neural populations. BMC Neurosci. 2009; 10: 93–109.
  25. Jones N.A., Hill A.J., Smith I. et al. Cannabidiol displays antiepileptiform and antiseizure properties in vitro and in vivo. J. Pharm. Exp. Ther. 2010; 332: 569–577.
  26. Kamioka H., Jimbo Y., Charlety P.J., Kawana A. Planar electrode arrays for long-term measurement of neuronal firing in cultured cortical slices. Cellular Eng. 1997; 2: 148–153.
  27. Kang G., Lee J.-H., Leeb C.-S., Nam Y. Agarose microwell based neuronal microcircuit arrays on microelectrode arrays for high throughput drug testing. Lab. Chip. 2009; 9: 3236–3242.
  28. Karkar K.M., Garcia P.A., Bateman L.M. et al. Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold. Epilepsia 2002; 43: 932–935.
  29. Keefer E.W., Gramowski A., Gross G.W. NMDA receptor-dependent periodic oscillations in cultured spinal cord networks. J. Neurophysiol. 2001; 86: 3030–3042.
  30. Linke S., Goertz P., Baader S.L. et al. Aldolase C/Zebrin II is released to the extracellular space after stroke and inhibits the etwork activity of cortical neurons. Neurochem. Res. 2006; 31: 1297–1303.
  31. Madhavan R., Chao Z.C., Potter S.M. Plasticity of recurring spatiotemporal activity patterns in cortical networks. Phys. Biol. 2007; 4: 181–193.
  32. McIntyre A.L., Fergusson A.D., Hebert C.P. et al. Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA 2003; 22: 2992–2999.
  33. Nimmrich V., Grimm C., Draguhn A. et al. Amyloid beta oligomers (A beta (1–42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J. Neurosci.2008; 28: 788–797.
  34. O’Shaughnessy T.J., Liu J.L., Ma W. Passaged neural stem cellderived neuronal networks for a portable biosensor. Biosens. Bioelectr. 2009; 24: 2365–2370.
  35. Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Meth. 1980; 2: 19–31.
  36. Pettit D.L., Shao Z., Yakel J.L. Beta-amyloid (1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci. 2001; 21: RC120: 1–5.
  37. Pizzi R.M.R., Cino G., Gelain F. et al. Learning in human neural networks on microelectrode arrays. Biosystems 2007; 88: 1–15.
  38. Pizzi R.M.R., Rossetti D., Cino G. et al. A cultured human neural network operates a robotic actuator. Ibid 2009; 95: 137–144.
  39. Prado G.R., Ross J.D., DeWeerth S.P., LaPlaca M.C. Mechanical trauma induces immediate changes in neuronal network activity. J. Neural Eng. 2005; 2: 148–158.
  40. Regehr W.G., Pine J., Cohan C.S. et al. Sealing cultured neurons to embedded dish electrodes facilitates long-term stimulation and recording. J. Neurosci. Meth. 1989; 30: 91–106.
  41. Rubinsky L., Raichman N., Baruch I. et al. Study of hypothermia on cultured neuronal networks using multi-electrode arrays. Ibid 2007; 160: 288–293.
  42. Rubinsky L., Raichman N., Lavee J. Spatio-temporal motifs `remembered’ in neuronal networks following profound hypothermia. Neural Netw. 2008; 21: 1232–1237.
  43. Ruaro M.E., Bonifazi P., Torre V. Toward the neurocomputer: image processing and pattern recognition with neuronal cultures. IEEE Trans. Biomed. Eng. 2005; 52: 371–383.
  44. Shimono K., Baudry M., Panchenko V., Taketani M. Chronic multichannel recordings from organotypic hippocampal slice cultures: protection from excitotoxic effects of NMDA by noncompetitive NMDA antagonists. J. Neurosci. Meth. 2002; 120: 193–202.
  45. Srinivas K.V., Jain R., Saurav S., Sikdar S.K. Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur. J. Neurosci. 2007; 25: 3276–3286.
  46. Shtark M.B., Ratushnyak A.S., Voskresenskaya L.V., Olenev S.N. A multielectrode perfusion chamber for tissue culture research. Bull. Exp. Biol. Med. 1974; 78; 1090–1092.
  47. Sun D.A., Sombati S., Blair R.E., DeLorenzo R.J. Long-lasting alterations in neuronal calcium homeostasis in an in vitro model of stroke induced epilepsy. Cell Calcium, 2004; 35: 155–163.
  48. Takayama Y., Moriguchi H., Kotani K., Jimbo Y. Spontaneous calcium transients in cultured cortical networks during development. IEEE Trans. Biomed. Eng. 2009; 56: 2949–2956.
  49. Thomas C.A., Springer P.A., Loeb G.E. et al. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 1972; 74: 61–66.
  50. Van Pelt J., Vajda I., Wolters P.S. et al. Dynamics and plasticity in developing neuronal networks in vitro. Prog. Brain Res. 2005; 147: 173–188.
  51. Varghese K., Molnar P., Das M. et al. A new target for amyloid beta toxicity validated by standard and high-throughput electrophysiology. PLoS One 2010; 5: e8643.
  52. Venkitaramani D.V., Chin J., Netzer W.J. et al. Beta-amyloid modulation of synaptic transmission and plasticity. J. Neurosci. 2007; 27: 11832–11837.
  53. Wagenaar D.A., Pine J., Potter S.M. An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci. 2006; 7: 11–29.
  54. Wahl A.-S., Buchthal B., Rode F. Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors. Neurosci. 2009; 158: 344–352.
  55. Wang Q., Rowan M.J., Anwyl R. Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J. Neurosci. 2004; 24: 6049–6056.
  56. Wheeler B.C., Novak J.L. Current source density estimation using microelectrode array data from the hippocampal slice preparation. IEEE Trans. Biomed. Eng. 1986; 33: 1204–1212.
  57. Xiang G., Pan L., Huange L. et al. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro. Biosens. Bioelectr. 2007; 22: 2478–2484.
  58. Yang X.F., Chang J.H., Rothman S.M. Long-lasting anticonvulsant effect of focal cooling on experimental neocortical seizures. Epilepsia 2003; 44: 1500–1505.
  59. Yu Z., Graudejus O., Tsay C. et al. Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J. Neurotrauma 2009; 26: 1135–1145.
  60. Yu Z., Tsay C., Lacour S.P. et al. Stretchable microelectrode arrays – a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006; Suppl.: 6732–6735.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Mukhina I.V., Khaspekov L.G., 2010

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах