Роль нарушений артериального, венозного кровотока и ликворотока в развитии когнитивных расстройств при церебральной микроангиопатии

Обложка


Цитировать

Полный текст

Аннотация

Церебральная микроангиопатия (ЦМА) является главной причиной сосудистых когнитивных расстройств (КР), ведущей причиной смешанных деменций и основным модифицируемым фактором риска болезни Альцгеймера.

Цель исследования — изучить роль артериального, венозного кровотока и ликворотока, а также их взаимоотношений в развитии КР у пациентов с ЦМА.

Материал и методы. Обследовано 96 пациентов (32 мужчины и 64 женщины, средний возраст 60,6±6,3 года) с когнитивными жалобами и ЦМА, диагностированной по МРТ-критериям STRIVE. Оценивали тяжесть КР по общему когнитивному уровню (шкала MoCA и независимость в повседневной жизни), результатам тестов на память («Заучивание 10 слов») и управляющие функции мозга  («ТМТ В-А»). Методом фазово-контрастной МРТ измеряли кровоток во внутренних сонных и позвоночных артериях (общий артериальный кровоток), внутренних яремных венах, прямом и верхнем сагиттальном синусах, а также ликвороток на уровне водопровода мозга. Рассчитывали индексы артериальной пульсации и интракраниального комплаенса.

Результаты. Деменция и выраженные нарушения памяти связаны с повышением индекса артериальной пульсации, индекса интракраниального комплаенса и ударного объема ликвора на уровне водопровода мозга; выраженные нарушения управляющих функций мозга дополнительно — со снижением общего артериального кровотока, венозного кровотока в прямом и верхнем сагиттальном синусах. Показатели кровотока и ликворотока взаимосвязаны, индекс артериальной пульсации оказывает влияние на все исследуемые показатели.

Заключение. Тяжесть КР при ЦМА определяется повышением индекса артериальной пульсации, индекса интракраниального комплаенса, ударного объема ликвора на уровне водопровода мозга, а тяжесть дисрегуляторных расстройств — одновременным снижением общего артериального кровотока и венозного кровотока в прямом и верхнем сагиттальном синусах. Особенности изменений кровотока и ликворотока и их взаимосвязанность у пациентов с КР вследствие ЦМА позволяют предполагать патогенетическую значимость в повреждении мозга и развитии КР при ЦМА нарушений гидродинамических процессов в мозге.

Об авторах

Лариса Анатольевна Добрынина

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: dobrla@mail.ru
ORCID iD: 0000-0001-9929-2725

д.м.н., г.н.с., рук. 3-го неврологического отделения

Россия, Москва

Булат Митхатович Ахметзянов

ФГАУ «Лечебно-реабилитационный центр» Минздрава РФ

Email: dobrla@mail.ru
Россия, Москва

Зухра Шарапутдиновна Гаджиева

ФГБНУ «Научный центр неврологии»

Email: dobrla@mail.ru
Россия, Москва

Елена Игоревна Кремнева

ФГБНУ «Научный центр неврологии»

Email: dobrla@mail.ru
Россия, Москва

Людмила Андреевна Калашникова

ФГБНУ «Научный центр неврологии»

Email: dobrla@mail.ru
Россия, Москва

Марина Викторовна Кротенкова

ФГБНУ «Научный центр неврологии»

Email: dobrla@mail.ru
ORCID iD: 0000-0003-3820-4554

д.м.н., рук. отд. лучевой диагностики

Россия, 125367, Москва, Волоколамское шоссе, д. 80

Список литературы

  1. Gorelick P.B., Scuteri A., Black S.E. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011; 42: 2672–2713. doi: 10.1161/STR.0b013e3182299496. PMID: 21778438.
  2. Deramacourt V., Slade J.Y., Oakley A.E. et al. Staging and natural history of cerebrovascular pathology in dementia. Neurology 2012; 78: 1043–1050. doi: 10.1212/WNL.0b013e31824e8e7f. PMID: 22377814.
  3. Wardlaw J.M., Smith E.E., Biessels G.J. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822–838. doi: 10.1016/S1474-4422(13)70124-8. PMID: 23867200.
  4. Livingston G., Sommerlad A., Orgeta V. et al. Dementia prevention, intervention, and care. Lancet 2017; 390: 2673–2734. doi: 10.1016/S0140-6736(17)31363-6. PMID: 28735855.
  5. Smith E.E., Beaudin A.E. New insights into cerebral small vessel disease and vascular cognitive impairment from MRI. Curr Opin Neurol 2018; 31: 36–43. doi: 10.1097/WCO.0000000000000513. PMID: 29084064.
  6. Калашникова Л.А., Кадыков А.С., Гулевская Т.С. Когнитивные нарушения и деменция при субкортикальной артериосклеротичеcкой энцефалопатии в пожилом и старческом возрасте. Клиническая геронтология 1996; 1: 22–26.
  7. Яхно Н.Н., Левин О.С., Дамулин И.В. Сопоставление клинических и МРТ-данных при дисциркуляторной энцефалопатии. Сообщение 2: когнитивные нарушения. Неврологический журнал 2001; 6(3): 10–19.
  8. O’Sullivan M., Jones D.K., Summers P.E. et al. Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 2001. 57: 632–638. doi: 10.1212/WNL.57.4.632. PMID: 11524471.
  9. Гулевская Т.С. Патология белого вещества полушарий головного мозга при артериальной гипертонии с нарушениями мозгового кровообращения: дис. … д-ра мед. наук. М., 1994.
  10. Fisher C.M. The arterial lesions underlying lacunes. Acta Neuropathol 1969; 12: 1–15. PMID: 5708546.
  11. Гулевская Т.С., Людковская И.Г. Артериальная гипертония и патология белого вещества головного мозга. Архив патологии 1992; 2: 53–59.
  12. Гулевская Т.С., Моргунов В.А. Патологическая анатомия нарушений мозгового кровообращения при атеросклерозе и артериальной гипертонии. М., 2009. 296 с.
  13. Ibayashi S., Nagao T., Kuwabara Y. et al. Mechanism for decreased cortical oxygen metabolism in patients with leukoaraiosis: Is disconnection the answer? Stroke Cerebrovasc Dis 2000; 9: 22–26. doi: 10.1016/S1052-3057(00)19327-9.
  14. Машин В.В. Гипертоническая энцефалопатия: клинические проявления и церебральная гемодинамика у больных хронической сердечной недостаточностью: дис. … канд. мед. наук. М., 2004.
  15. Гераскина Л.А., Шарыпова Т.Н., Машин В.В. и др. Кровоснабжение головного мозга при гипертонической энцефалопатии и хронической сердечной недостаточности. Кардиоваскулярная терапия и профилактика 2009; (5): 28–32.
  16. ten Dam V.H., van den Heuvel D.M., de Craen A.J. et al. Decline in total cerebral blood flow is linked with increase in periventricular but not deep white matter hyperintensities. Radiology; 2007; 243: 198–203. doi: 10.1148/radiol.2431052111. PMID: 17329688.
  17. van der Veen P.H., Muller M., Vincken K.L. et al. Longitudinal relationship between cerebral small-vessel disease and cerebral blood flow: the second manifestations of arterial disease — magnetic resonance study. Stroke 2015; 46: 1233–1238. doi: 10.1161/STROKEAHA.114.008030. PMID: 25804924.
  18. Shi Y., Thrippleton M.J., Makin S.D. et al. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2016; 36: 1653–1667. doi: 10.1177/0271678X16662891. PMID: 27496552.
  19. Ганнушкина И.В., Лебедева Н.В. Гипертоническая энцефалопатия. М., 1987.
  20. Moody D.M., Brown W.R., Challa V.R., Anderson R.L. Periventricular venous collagenosis: association with leukoaraiosis. Radiology 1995. 194: 469–76. doi: 10.1148/radiology.194.2.7824728. PMID: 7824728.
  21. Brown W.R., Moody D.M., Challa V.R. et al. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci 2002; 203–204: 159–163. PMID: 12417376.
  22. Shim Y.S., Yang D.W., Roe C.M. et al. Pathological correlates of white matter hyperintensities on magnetic resonance imaging. Dement Geriatr Cogn Disord 2015; 39: 92–104. doi: 10.1159/000366411. PMID: 25401390.
  23. Машин В.В., Белова Л.А., Кадыков А.С. Венозная дисциркуляция головного мозга при гипертонической энцефалопатии. Неврологический вестник 2005; (2–3): 17–21.
  24. Белова Л.А. Роль артериовенозных взаимоотношений в формировании клинико-патогенетических вариантов гипертонической энцефалопатии. Журнал неврологии и психиатрии им. С.С. Корсакова 2012; (6): 8–12.
  25. Sachdev P., Kalaria R., O’Brien J. et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord 2014; 28: 206–218. doi: 10.1097/WAD.0000000000000034. PMID: 24632990.
  26. Pantoni L., Fierini F., Poggesi A.; LADIS Study Group. Impact of cerebral white matter changes on functionality in older adults: An overview of the LADIS Study results and future directions. Geriatr Gerontol Int 2015; 15 Suppl 1: 10–6. doi: 10.1111/ggi.12665. PMID: 26671152.
  27. Bateman G.A. Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal pressure hydrocephalus. Neuroradiology 2002; 44: 740–748. doi: 10.1007/s00234-002-0812-0. PMID: 12221445.
  28. Bateman G.A. Pulse wave encephalopathy: a spectrum hypothesis incorporating Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus. Med Hypotheses 2004; 62: 182–187. doi: 10.1016/S0306-9877(03)00330-X. PMID: 14962623.
  29. Bateman G.A., Levi C.R., Schofield P. et al. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology 2008; 50: 491–497. doi: 10.1007/s00234-008-0374-x. PMID: 18379767.
  30. Henry-Feugeas M.C., De Marco G., Idy-Peretti I. et l. Age-related cerebral white matter changes and pulse-wave encephalopathy: observations with three-dimensional MRI. Magn Reson Imaging 2005; 23: 929-37. doi: 10.1016/j.mri.2005.09.002. PMID: 16310108.
  31. Henry-Feugeas M.C., Roy C., Baron G., Schouman-Claeys E. Leukoaraiosis and pulse-wave encephalopathy: observations with phase contrast MRI in mild cognitive impairment. J Neuroradiol 2009; 36: 212–218. doi: 10.1016/j.neurad.2009.01.003. PMID: 19250677.
  32. Iliff J.J., Wang M., Liao Y. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 2012; 4: 1–11. doi: 10.1126/scitranslmed.3003748. PMID: 22896675.
  33. Iliff J.J., Wang M., Zeppenfeld D.M. et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 2013; 33: 18190–18199. doi: 10.1523/JNEUROSCI.1592-13.2013. PMID: 24227727.
  34. Zlokovic B.V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 2011; 12: 723–738. doi: 10.1038/nrn3114. PMID: 22048062.
  35. Mestre H., Kostrikov S., Mehta R.I., Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond.) 2017; 131: 2257–2274. doi: 10.1042/CS20160381. PMID: 28798076.
  36. Добрынина Л.А., Гаджиева З.Ш., Калашникова Л.А. и др. Нейропсихологический профиль и факторы сосудистого риска у больных с церебральной микроангиопатией. Анналы клинической и экспериментальной неврологии 2018; (4): 5–15. doi: 10.25692/ACEN.2018.4.1.
  37. Nasreddine Z.S., Phillips N.A., Bedirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 4: 695–699. doi: 10.1111/j.1532-5415.2005.53221.x. PMID: 15817019.
  38. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington, 2013. 970 p. doi: 10.1176/appi.books.9780890425596.
  39. Lezak M.D., Howieson D.B., Loring D.W. et al. Neuropsychological assessment (4th ed.). New York, 2004.
  40. Лурия А.Р. Высшие корковые функции человека. М., 1969.
  41. El Sankari S., Gondry-Jouet C., Fichten A. et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer's diseas: a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2011. 8: 12. doi: 10.1186/2045-8118-8-12. PMID: 21349149.
  42. Baledent O., Henry-Feugeas M.C., Idy-Peretti I. Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semi-automated cerebrospinal fluid segmentation. Invest Radiol 2001. 36: 368–377. PMID: 11496092.
  43. Mokri B. The Monro–Kellie hypothesis: applications in CSF volume depletion. Neurology 2001; 56: 1746–1748. PMID: 11425944.
  44. Ambarki K., Baledent O., Kongolo G. et al. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng 2007; 54: 483–491. doi: 10.1109/TBME.2006.890492. PMID: 17355060.
  45. Frydrychowski A.F., Winklewski P.J., Guminski W. Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans. PLoS One 2012; 7: e48245. doi: 10.1371/journal.pone.0048245. PMID: 23110218.
  46. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev 2004; 46: 243–260. doi: 10.1016/j.brainresrev.2004.04.0057. PMID: 15571768.
  47. Vignes J.R., Dagain A., Guérin J., Liguoro D. A hypothesis of cerebral venous system regulation based on a study of the junction between the cortical bridging veins and the superior sagittal sinus. Laboratory investigation. J Neurosurg 2007; 107: 1205–1210. doi: 10.3171/JNS-07/12/1205. PMID: 18077958.
  48. Egnor M., Rosiello A., Zheng L. A model of intracranial pulsations. Pediatr Neurosurg 2001; 35: 284–298. doi: 10.1159/000050440. PMID: 11786696.
  49. Williams H. A unifying hypothesis for hydrocephalus, Chiari malformation, syringomyelia, anencephaly and spina bifida. Cerebrospinal Fluid Res 2008; 5: 7. doi: 10.1186/1743-8454-5-7. PMID: 18405364.
  50. Яхно Н.Н., Захаров В.В., Локшина А.Б. Синдром умеренных когнитивных нарушений при дисциркуляторной энцефалопатии. Журнал неврологии и психиатрии им. С.С. Корсакова 2005; (2): 13—7.
  51. LADIS Study Group. 2001–2011: a decade of the LADIS (Leukoaraiosis And DISability) Study: what have we learned about white matter changes and small-vessel disease? Cerebrovasc Dis 2011; 32: 577–588. doi: 10.1159/000334498. PMID: 22279631.
  52. Lawrence A.J., Patel B., Morris R.G. et al. Mechanisms of cognitive impairment in cerebral small vessel disease: multimodal MRI results from the St George's cognition and neuroimaging in 140 stroke (SCANS) study. PloS One 2013; 8: e61014. doi: 10.1371/journal.pone.0061014. PMID: 23613774.
  53. Albert M.S., DeKosky S.T., Dickson D. et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 270–279. doi: 10.1016/j.jalz.2011.03.008. PMID: 21514249.
  54. Prins N.D., van Dijk E.J., den Heijer T. et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 2005; 128: 2034–2041. doi: 10.1093/brain/awh553. PMID: 15947059.
  55. Nordahl C.W., Ranganath C., Yonelinas A.P. et al. Different mechanisms of episodic memory failure in mild cognitive impairment. Neuropsychologia 2005; 43: 1688-1697. doi: 10.1016/j.neuropsychologia.2005.01.003. PMID: 16009250.
  56. Reed B.R., Mungas D.M., Kramer J.H. et al. Profiles of neuropsychological impairment in autopsy-defined Alzheimer's disease and cerebrovascular disease. Brain 2007. 130: 731–739. doi: 10.1093/brain/awl385. PMID: 17267522.
  57. Vasquez B.P., Zakzanis K.K. The neuropsychological profile of vascular cognitive impairment not demented: a meta-analysis. J Neuropsychol 2015; 9: 109–136. doi: 10.1111/jnp.12039. PMID: 24612847.
  58. McAleese K.E., Alafuzoff I., Charidimou A. et al. Post-mortem assessment in vascular dementia: advances and aspirations. BMC Med 2016; 14: 129. doi: 10.1186/s12916-016-0676-5. PMID: 27600683.
  59. Grinberg L.T., Nitrini R., Suemoto C.K. et al. Prevalence of dementia subtypes in a developing country: a clinicopathological study. Clinics 2013; 68: 1140–1145. doi: 10.6061/clinics/2013(08)13. PMID: 24037011.
  60. Колтовер А.Н., Людковская И.Г., Гулевская Т.С. и др. Гипертоническая ангиоэнцефалопатия в патоморфологическом аспекте. Журнал невропатологии и психиатрии им. С.С. Корсакова 1984; 84: 1016–1020.
  61. Fisher C.M. Lacunar strokes and infarcts: a review. Neurology 1982; 32: 871–871. doi: 10.1212/WNL.32.8.871. PMID: 7048128.
  62. Geschwind N. Disconnexion syndromes in animals and man. II. Brain 1965; 88: 585–644. PMID: 5318824.
  63. O’Sullivan M., Morris R.G., Huckstep B. et al. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 2004; 75: 441–447. doi: 10.1136/jnnp.2003.014910. PMID: 14966162.
  64. Fazekas F., Kleinert R., Offenbacher H. et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. Am J Neuroradiol 1991. 12: 915–921. PMID: 1950921.
  65. Jolly T.A., Bateman G.A., Levi C.R. et al. Early detection of microstructural white matter changes associated with arterial pulsatility. Front Hum Neurosci 2013; 7: 782. doi: 10.3389/fnhum.2013.00782. PMID: 24302906.
  66. Ekstedt J. CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry 1978; 41: 345–353. doi: 10.1136/jnnp.41.4.345. PMID: 650242.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Dobrynina L.A., Akhmetzyanov B.M., Gadzhieva Z.S., Kremneva E.I., Kalashnikova L.A., Krotenkova M.V., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах