Навигационное ТМС-картирование с сеточным алгоритмом в оценке реорганизации корковых представительств мышц при боковом амиотрофическом склерозе
- Авторы: Бакулин И.С.1, Синицын Д.О.1, Пойдашева А.Г.1, Чернявский А.Ю.1,2, Супонева Н.А.1, Захарова М.Н.1, Пирадов М.А.1
-
Учреждения:
- ФГБНУ «Научный центр неврологии»
- ФГБУН «Физико-технологический институт имени К.А. Валиева» Российской академии наук
- Выпуск: Том 13, № 3 (2019)
- Страницы: 55-62
- Раздел: Технологии
- Дата подачи: 01.09.2019
- Дата публикации: 01.09.2019
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/605
- DOI: https://doi.org/DOI:%2010.25692/ACEN.2019.3.7
- ID: 605
Цитировать
Полный текст
Аннотация
Введение. Картирование моторной коры с применением навигационной транскраниальной магнитной стимуляции (ТМС) является перспективным методом оценки реорганизации моторной коры при боковом амиотрофическом склерозе (БАС). Использование сеточного алгоритма позволяет стандартизировать протокол картирования и может способствовать уменьшению вариабельности определяемых показателей.
Цель исследования — проанализировать особенности реорганизации корковых представительств мышцы кисти у пациентов с классическим БАС по данным навигационного ТМС-картирования с использованием сеточного алгоритма.
Материалы и методы. В исследование включены 14 пациентов с классическим БАС и 9 здоровых добровольцев. Навигационное ТМС-картирование корковых представительств правой m. abductor pollicis brevis (APB) проводили с использованием заранее заданной сетки (7×7 квадратных ячеек), центрированной относительно «горячей точки. В каждую ячейку в случайном порядке предъявляли 5 стимулов с интенсивностью 110% от индивидуального пассивного моторного порога (ПМП). Анализировали ПМП и площадь корковых представительств APB, взвешенную амплитудой или вероятностью.
Результаты. У пациентов с БАС выявлено статистически значимое уменьшение взвешенной амплитудой площади корковых представительств APB по сравнению со здоровыми добровольцами. ПМП, площадь и взвешенная вероятностью площадь корковых представительств APB статистически значимо не различались между группами. У пациентов с БАС выявлена статистически значимая корреляция ПМП с выраженностью нарушений функций и тяжестью поражения верхнего мотонейрона по клиническим данным. Статистически значимых корреляционных связей между показателями корковых представительств и клиническими признаками у пациентов с БАС не выявлено.
Заключение. При навигационном ТМС-картировании моторной коры с сеточным алгоритмом у пациентов с БАС выявляется уменьшение взвешенной амплитудой площади корковых представительств APB. Необходимо уточнение роли навигационного ТМС-картирования с предложенным алгоритмом в диагностике, прогнозировании и мониторинге течения БАС.
Об авторах
Илья Сергеевич Бакулин
ФГБНУ «Научный центр неврологии»
Автор, ответственный за переписку.
Email: bakulin@neurology.ru
ORCID iD: 0000-0003-0716-3737
к.м.н., н.с. отд. нейрореабилитации и физиотерапии
Россия, МоскваДмитрий Олегович Синицын
ФГБНУ «Научный центр неврологии»
Email: bakulin@neurology.ru
Россия, Москва
Александра Георгиевна Пойдашева
ФГБНУ «Научный центр неврологии»
Email: bakulin@neurology.ru
Россия, Москва
Андрей Юрьевич Чернявский
ФГБНУ «Научный центр неврологии»; ФГБУН «Физико-технологический институт имени К.А. Валиева» Российской академии наук
Email: bakulin@neurology.ru
Россия, Москва
Наталья Александровна Супонева
ФГБНУ «Научный центр неврологии»
Email: bakulin@neurology.ru
Россия, Москва
Мария Николаевна Захарова
ФГБНУ «Научный центр неврологии»
Email: bakulin@neurology.ru
Россия, Москва
Михаил Александрович Пирадов
ФГБНУ «Научный центр неврологии»
Email: bakulin@neurology.ru
Россия, Москва
Список литературы
- Phillips C.G., Porter R. Corticospinal Neurones: Their Role in Movement. N.Y., 1977.
- Porter R., Lemon R. Corticospinal Function and Voluntary Movement. Oxford, 1993.
- Schieber M.H. Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 2001; 86: 2125–2143. doi: 10.1152/jn.2001.86.5.2125. PMID: 11698506.
- Rossini P.M., Burke D., Chen R. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126: 1071–1107. doi: 10.1016/j.clinph.2015.02.001. PMID: 25797650.
- Пойдашева А.Г., Бакулин И.С., Чернявский А.Ю. и др. Картирование корковых представительств мышц с помощью навигационной транскраниальной магнитной стимуляции: возможности применения в клинической практике. Медицинский алфавит 2017; 2(22): 21–25.
- Krieg S.M., Lioumis P., Mäkelä J.P. et al. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir (Wien) 2017; 159: 1187–1195. doi: 10.1007/s00701-017-3187-z. PMID: 28456870.
- Weiss C., Nettekoven C., Rehme A.K. et al. Mapping the hand, foot and face representations in the primary motor cortex - retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 2013; 66: 531–542. doi: 10.1016/j.neuroimage.2012.10.046. PMID: 23116812.
- Lüdemann-Podubecká J., Nowak D.A. Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke? Neurosci Biobehav Rev 2016; 69: 239–251. doi: 10.1016/j.neubiorev.2016.07.006. PMID: 27435238.
- Червяков А.В., Пирадов М.А., Савицкая Н.Г. и др. Новый шаг к персонифицированной медицине. Навигационная система транскраниальной магнитной стимуляции (NBS eXimia Nexstim). Анналы клинической и экспериментальной неврологии 2012; 6(3): 37–46. doi: 10.18454/ACEN.2017.2.11.
- Ruohonen J., Karhu J. Navigated transcranial magnetic stimulation. Neurophysiol Clin 2010; 40: 7–17. doi: 10.1016/j.neucli.2010.01.006. PMID: 20230931.
- Tarapore P.E., Tate M.C., Findlay A.M. et al. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 2012; 117: 354–362. doi: 10.3171/2012.5.JNS112124. PMID: 22702484.
- Wittenberg G.F. Motor mapping in cerebral palsy. Dev Med Child Neurol 2009; 51 (Suppl 4): 134–139. doi: 10.1111/j.1469-8749.2009.03426.x. PMID: 19740221.
- Quartarone A. Transcranial magnetic stimulation in dystonia. Handb Clin Neurol 2013; 116: 543–553. doi: 10.1016/B978-0-444-53497-2.00043-7. PMID: 24112922.
- Barz A., Noack A., Baumgarten P. et al. Motor cortex reorganization in patients with glioma assessed by repeated navigated transcranial magnetic stimulation — a longitudinal study. World Neurosurg 2018; 112: e442–e453. doi: 10.1016/j.wneu.2018.01.059. PMID: 29360588.
- Labyt E., Houdayer E., Cassim F. et al. Motor representation areas in epileptic patients with focal motor seizures: a TMS study. Epilepsy Res 2007; 75(2–3): 197–205. doi: 10.1016/j.eplepsyres.2007.06.004. PMID: 17628428.
- Бакулин И.С., Пойдашева А.Г., Чернявский А.Ю. и др. Методика выявления поражения верхнего мотонейрона при боковом амиотрофическом склерозе с помощью транскраниальной магнитной стимуляции. Анналы клинической и экспериментальной неврологии 2018; 12(2): 45–54. doi: 10.25692/ACEN.2018.2.7.
- Bakulin I.S., Chervyakov A.V., Suponeva N.A. et al. Motor cortex hyperexcitability, neuroplasticity and degeneration in amyotrophic lateral sclerosis. In: H. Foyaca-Sibat (ed.) Novel Aspects of Amyotrophic Lateral Sclerosis. Rijeka, 2016: 47–72.
- de Carvalho M., Miranda P.C., Luís M.L. et al. Cortical muscle representation in amyotrophic lateral sclerosis patients: changes with disease evolution. Muscle Nerve 1999; 22: 1684–1692. PMID: 10567081.
- Chervyakov A.V., Bakulin I.S., Savitskaya N.G. et al. Navigated transcranial magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve 2015; 51: 125–131. doi: 10.1002/mus.24345. PMID: 25049055.
- Cavaleri R., Schabrun S.M., Chipchase L.S. The number of stimuli required to reliably assess corticomotor excitability and primary motorcortical representations using transcranial magnetic stimulation (TMS): a systematic reviewand meta-analysis. Syst Rev 2017; 6: 48. doi: 10.1186/s13643-017-0440-8. PMID: 28264713.
- Pellegrini M., Zoghi M., Jaberzadeh S. The effect of transcranial magnetic stimulation test intensity on the amplitude, variability and reliability of motor evoked potentials. Brain Res 2018; 1700: 190–198. doi: 10.1016/j.brainres.2018.09.002. PMID: 30194017.
- Kraus D., Gharabaghi A. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex. Neural Plast 2016; 2016: 7365609. doi: 10.1155/2016/7365609. PMID: 2761024.
- Chervyakov A.V., Sinitsyn D.O., Piradov M.A. Variability of neuronal responses: types and functional significance in neuroplasticity and neural darwinism. Front Hum Neurosci 2016; 10: 603. PMID: 27932969.
- Brooks B.R., Miller R.G., Swash M. et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1; 293–239. PMID: 11464847.
- Cedarbaum J.M., Stambler N., Malta E. et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 1999; 169: 13–21. PMID: 10540002.
- Florence J.M., Pandya S., King W.M. et al. Clinical trials in Duchenne dystrophy. Standardization and reliability of evaluation procedures. Phys Ther 1984; 64: 41–45. PMID: 6361809.
- Turner M.R., Cagnin A., Turkheimer F.E. et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 2004; 15: 601–609. PMID: 15056468.
- Хондкариан О.А., Бунина Т.Л., Завалишин И.А. Боковой амиотрофический склероз. М., 1978.
- Oldfield R.C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9: 97–113. PMID: 5146491.
- Huynh W., Simon N.G., Grosskreutz J. et al. Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol 2016; 127: 2643–2660. doi: 10.1016/j.clinph.2016.04.025. PMID: 27291884.
- Vucic S., Ziemann U., Eisen A. et al. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights J Neurol Neurosurg Psychiatry 2013; 84: 1161–1170. doi: 10.1136/jnnp-2012-304019. PMID: 23264687.
- Geevasinga N., Menon P., Özdinler P.H. et al. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 2016; 12: 651–661. doi: 10.1038/nrneurol.2016.140. PMID: 27658852.
- Huynh W., Dharmadasa T., Vucic S., Kiernan M.C. Functional biomarkers for amyotrophic lateral sclerosis. Front Neurol 2019; 9: 1141. doi: 10.3389/fneur.2018.01141. PMID: 30662429.
- Eisen A., Pant B., Stewart H. Cortical excitability in amyotrophic lateral sclerosis: a clue to pathogenesis. Can J Neurol Sci 1993; 20: 11–16. PMID: 8096792.
- Mills K.R., Nithi K.A. Corticomotor threshold is reduced in early sporadic amyotrophic lateral sclerosis. Muscle Nerve 1997; 20: 1137–1141. PMID: 9270669.
- Oliveri M., Brighina F., La Bua V. et al. Reorganization of cortical motor area in prior polio patients. Clin Neurophysiol 1999; 110: 806–812. PMID: 10400193.
- Matamala J.M., Geevasinga N., Huynh W. et al. Cortical function and corticomotoneuronal adaptation in monomelic amyotrophy. Clin Neurophysiol 2017; 128: 1488–1495. doi: 10.1016/j.clinph.2017.05.005. PMID: 28624492.
- Farrar M.A., Vucic S., Johnston H.M., Kiernan M.C. Corticomotoneuronal integrity and adaptation in spinal muscular atrophy. Arch Neurol 2012; 69: 467–473. doi: 10.1001/archneurol.2011.1697. PMID: 22491191.