Влияние реактивной глии Бергмана на кратковременную синаптическую пластичность в моделях мозжечковой нейродегенерации, вызванной хронической активацией ChR2 и экспрессией мутантного атаксина-1

Обложка


Цитировать

Полный текст

Аннотация

Введение. Нарушение синаптической пластичности происходит на ранних стадиях нейродегенеративного процесса и потенциально обратимо. Исследование механизмов, ассоциированных с синаптической пластичностью при нейродегенеративных состояниях мозжечка, открывает возможности для исследования потенциальных терапевтических средств.

Цель работы — исследование влияния астроцитарного звена на парное облегчение (PPF) в синапсах коры мозжечка мышей с помощью комплекса методов иммуногистохимического, оптогенетического и электрофизиологического анализа.

Материалы и методы. Опыты проведены на 12-недельных мышах линии CD1. Модель астроглиоза мозжечка мыши создавали с помощью хронической активации светочувствительных каналов ChR2 в глии Бергмана и после экспрессии в ней мутантного атаксина-1. Для моделирования астроцит-опосредованной нейродегенерации мозжечка мышам интракортикально вводили векторные конструкции AVV GFAP-ChR2-mKate с последующей хронической 4-дневной фотостимуляцией in vivo и LVV GFAP-ATXN1[Q85]-Flag без фотостимуляции. Мышам контрольных групп вводили физиологический раствор или LVV GFAP-ATXN1[Q2]-Flag. Динамику PPF-возбуждающих постсинаптических токов клеток Пуркинье регистрировали с помощью метода локальной фиксации потенциала. Экспрессию anti-GFAP, mKate и anti-Ataxin1 в коре мозжечка изучали методом иммуногистохимии.

Результаты. Для реактивной глии коры мозжечка после хронической фотостимуляции характерно повышение иммунореактивности анти-GFAP и изменение морфологии в виде извитости их отростков. У таких животных в синапсах клеток Пуркинье с параллельными волокнами коэффициент PPF был значительно увеличен из-за нарушения обратного захвата глутамата и перераздражения пресинапса этим нейромедиатором. Однако фотоактивация реактивной глии Бергмана приводила к резкому замедлению глутамат-глутаминового цикла и истощению пула глутамата на пресинапсе с последующим постепенным уменьшением коэффициента PPF. Подобные патологические механизмы найдены в нейродегенеративной модели с селективным поражением глии Бергмана мутантным атаксином-1.

Заключение. Астроциты оказывают влияние на кратковременную синаптическую пластичность, такую как PPF. При астроглиозе мозжечка нарушение PPF носит многоуровневый характер: изначально высокий уровень PPF значительно уменьшается после активации глии Бергмана, что связано с нарушением обратного захвата глутамата реактивной глией.

Об авторах

Антон Николаевич Шуваев

ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого»;
ФГАОУ ВО «Сибирский федеральный университет»

Автор, ответственный за переписку.
Email: shuvaevanton@hotmail.com
Россия, Красноярск

Ольга Сергеевна Белозер

ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого»

Email: shuvaevanton@hotmail.com
Россия, Красноярск

Олег Игоревич Можей

ФГАОУ ВО «Балтийский федеральный университет»

Email: shuvaevanton@hotmail.com
Россия, Калининград

Дарья Андреевна Яковлева

ФГАОУ ВО «Сибирский федеральный университет»

Email: shuvaevanton@hotmail.com
Россия, Красноярск

Андрей Николаевич Шуваев

ФГАОУ ВО «Сибирский федеральный университет»

Email: shuvaevanton@hotmail.com
Россия, Красноярск

Марина Викторовна Смольникова

ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого»;
Научно-исследовательский институт медицинских проблем Севера ФГБНУ Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»

Email: shuvaevanton@hotmail.com
Россия, Красноярск

Елена Анатольевна Пожиленкова

ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого»

Email: shuvaevanton@hotmail.com
Россия, Красноярск

Сергей Каспаров

Университет Бристоля

Email: shuvaevanton@hotmail.com
Великобритания, Бристоль

Владимир Валерьевич Салмин

ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого»

Email: shuvaevanton@hotmail.com
Россия, Красноярск

Алла Борисовна Салмина

ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого»

Email: shuvaevanton@hotmail.com
Россия, Красноярск

Список литературы

  1. Goodlett C.R., Mittleman G. The Cerebellum. In: Conn P.M. (ed.). Conn's Translational Neuroscience. London, 2016: 191–212. doi: 10.1016/C2014-0-02630-5.
  2. Tyrrell T., Willshaw D. Cerebellar cortex: its simulation and the relevance of Marr's theory. Philos Trans R Socb Lond B Biol Sci. 1992; 336(1277): 239–257. doi: 10.1098/rstb.1992.0059. PMID: 1353267.
  3. Hughes J.R. Post-tetanic рotentiation. Physiol Rev. 1958; 38(1): 91–113. doi: 10.1152/physrev.1958.38.1.91. PMID: 13505117.
  4. Regehr W.G. Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol. 2012; 4(7): a005702. doi: 10.1101/cshperspect.a005702. PMID: 22751149.
  5. Díaz-Rojas F., Sakaba T., Kawaguchi S.Y. Ca2+ current facilitation determines short-term facilitation at inhibitory synapses between cerebellar Purkinje cells. J Physiol. 2015; 593(22): 4889–4904. doi: 10.1113/JP270704. PMID: 26337248.
  6. Zucker R.S., Regehr W.G. Short-term synaptic plasticity. Annu Rev Physiol. 2002; 64: 355–405. doi: 10.1146/annurev.physiol.64.092501.114547. PMID: 11826273.
  7. Tani H., Dulla C.G., Farzampour Z. et al. A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron. 2014; 81(4): 888–900. doi: 10.1016/j.neuron.2013.12.026. PMID: 24559677.
  8. Lee A., Anderson A.R., Beasley S.J. et al. A new splice variant of the glutamate-aspartate transporter: cloning and immunolocalization of GLAST1c in rat, pig and human brains. J Chem Neuroanat. 2012; 43(1): 52–63. doi: 10.1016/j.jchemneu.2011.10.005. PMID: 22026960.
  9. Valtcheva S., Venance L. Control of long-term plasticity by glutamate transporters. Front Synaptic Neurosci. 2019; 11: 10. doi: 10.3389/fnsyn.2019.00010. PMID: 31024287.
  10. Belozor O.S., Yakovleva D.A., Potapenko I.V. et al. Extracellular S100β disrupts Bergman glia morphology and synaptic transmission in cerebellar Purkinje cells. Brain Sci. 2019; 9(4): pii: E80. doi: 10.3390/brainsci9040080. PMID: 31013844.
  11. Klement I.A., Skinner P.J., Kaytor M.D. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998; 95(1): 41–53. doi: 10.1016/s0092-8674(00)81781-x. PMID: 9778246.
  12. Zinebi F., Russell R.T., McKernan M., Shinnick-Gallagher P. Comparison of paired-pulse facilitation of AMPA and NMDA synaptic currents in the lateral amygdala. Synapse. 2001; 42(2): 115–127. doi: 10.1002/syn.1107. PMID: 11574948.
  13. Shuvaev A.N., Hosoi N., Sato Y. et al. Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol. 2017; 595(1): 141–164. doi: 10.1113/JP272950. PMID: 27440721.
  14. Liu B., Paton J.F., Kasparov S. Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol. 2008; 8: 49. doi: 10.1186/1472-6750-8-49. PMID: 18485188.
  15. Gourine A.V., Kasymov V., Marina N. et al. Astrocytes сontrol breathing through pH-dependent release of ATP. Science. 2010; 329(5991): 571–575. doi: 10.1126/science.1190721. PMID: 20647426.
  16. Figueiredo M., Lane S., Stout R.F. Jr. et al. Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium. 2014; 56(3): 208–214. doi: 10.1016/j.ceca.2014.07.007. PMID: 25109549.
  17. Hewinson J., Paton J.F., Kasparov S. Viral gene delivery: optimized protocol for production of high titer lentiviral vectors. Methods Mol Biol. 2013; 998: 65–75. doi: 10.1007/978-1-62703-351-0_5. PMID: 23529421.
  18. Han C.L., Zhao X.M., Liu Y.P. et al. Gene expression profiling of two epilepsy models reveals the ECM/Integrin signaling pathway is involved in epiletogenesis. Neuroscience. 2019; 396: 187–199. doi: 10.1016/j.neuroscience.2018.10.021. PMID: 30452975.
  19. Satake S., Inoue T., Imoto K. Paired-pulse facilitation of multivesicular release and intersynaptic spillover of glutamate at rat cerebellar granule cell-interneurone synapses. J Physiol. 2012; 590(22): 5653–5675. doi: 10.1113/jphysiol.2012.234070. PMID: 22930264.
  20. Armbruster M., Hanson E., Dulla C.G. Glutamate clearance is locally modulated by presynaptic neuronal activity in the cerebral cortex. J Neurosci. 2016; 36(40): 10404–10415. doi: 10.1523/JNEUROSCI.2066-16.2016. PMID: 27707974.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Shuvaev А.N., Belozor О.S., Mozjei O.I., Yakovleva D.A., Shuvaev А.N., Smolnikova M.V., Pozhilenkova Е.A., Каsparov S..., Salmin V.V., Salmina А.B., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах