Особенности методики натриевой магнитно-резонансной спектроскопии и её применение в неврологии

Обложка


Цитировать

Полный текст

Аннотация

Магнитно-резонансная спектроскопия является важным неинвазивным методом, основанным на определении концентрации и оценке пространственного распределения конкретных биохимически значимых тканевых метаболитов. Сегодня он превратился из научно-исследовательского инструмента в самостоятельный диагностический метод нейровизуализации, позволяющий ответить на ряд важных клинико-диагностических вопросов на ранней стадии заболевания, а также оценить эффективность проводимой терапии и дать клинический прогноз.

В статье приводится обзор данных о натриевой магнитно-резонансной спектроскопии, которая является очень чувствительным методом оценки жизнеспособности клеток и ионного гомеостаза, может использоваться для измерения ранних биохимических нарушений в тканях при различных дегенеративных заболеваниях. Изложены патофизиологические основы натриевой магнитно-резонансной спектроскопии, технические основы её применения, а также основные перспективные точки приложения данного метода в контексте различных заболеваний центральной нервной системы, которые встречаются в практике рентгенологов и неврологов.

Об авторах

Виктория Викторовна Синькова

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: kattorina@list.ru
ORCID iD: 0000-0003-2285-2725

ординатор отд. лучевой диагностики

Россия, 125367, Москва, Волоколамское шоссе, д. 80

Ирина Андреевна Кротенкова

ФГБНУ «Научный центр неврологии»

Email: kattorina@list.ru
ORCID iD: 0000-0001-5823-9434

к.м.н., н.с. отд. лучевой диагностики

Россия, 125367, Москва, Волоколамское шоссе, д. 80

Алина Анатольевна Лясковик

ФГБНУ «Научный центр неврологии»

Email: kattorina@list.ru
ORCID iD: 0000-0001-8062-0784

ординатор отд. лучевой диагностики

Россия, 125367, Москва, Волоколамское шоссе, д. 80

Родион Николаевич Коновалов

ФГБНУ «Научный центр неврологии»

Email: kattorina@list.ru
ORCID iD: 0000-0001-5539-245X

к.м.н., с.н.с. отд. лучевой диагностики

Россия, 125367, Москва, Волоколамское шоссе, д. 80

Марина Викторовна Кротенкова

ФГБНУ «Научный центр неврологии»

Email: kattorina@list.ru
ORCID iD: 0000-0003-3820-4554

д.м.н., рук. отд. лучевой диагностики

Россия, 125367, Москва, Волоколамское шоссе, д. 80

Список литературы

  1. Khomenko I.G., Bogdan A.A., Kataeva G.V., Chernysheva E.M. Multivoxel magnetic resonance spectroscopy in the examination of patients with cognitive disorders. Vestnik SPbGU. Fizika i khimiya.2016;3(1):82–89.(In Russ.)
  2. Berendsen H.J., Edzes H.T. The observation and general interpretation of sodium magnetic resonance in biological material. Ann NY Acad Sci. 2017;204:459–485. doi: 10.1111/j.1749-6632.1973.tb30799.x. PMDI: 4513164.
  3. Magnuson J.A., Magnuson N.S. NMR studies of sodium and potassium in various biological tissues. Ann NY Acad Sci. 1973;204:297–309. doi: 10.1111/j.1749-6632.1973.tb30786.x. PMID: 4513156.
  4. Feinberg D.A., Crooks L.A., Kaufman L. et al. Magnetic-resonance imaging performance — a comparison of sodium and hydrogen. Radiology. 2009;156(1):133–138. doi: 10.1148/radiology.156.1.4001399. PMID: 4001399.
  5. Maudsley A.A., Hilal S.K. Biological aspects of Na-23 imaging. Br Med Bull. 1984;40(2):165–166. doi: 10.1093/oxfordjournals.bmb.a071964. PMID: 6744003.
  6. Hilal S.K., Maudsley A.A., Ra J.B. et al. In vivo NMR imaging of sodium-23 in the human head. J Comput Assist Tomogr. 1985;9(1):1–7. doi: 10.1097/00004728-198501000-00001. PMID: 3968256.
  7. Grodd W., Klose U. Sodium-MR-imaging of the brain — initial clinical-results. Neuroradiology. 2008;30(5):399–407. doi: 10.1007/BF00404105. PMID: 2850509.
  8. Boada F.E., Gillen J.S., Shen G.X. et al. Fast three dimensional sodium imaging. Magn Reson Med. 2017;37(5):706–715. doi: 10.1002/mrm.1910370512. PMID: 9126944.
  9. Jerschow A. From nuclear structure to the quadrupolar NMR interaction and high-resolution spectroscopy. Prog NMR Spectrosc. 2005;46:63–78. doi: 10.1016/j.pnmrs.2004.12.001.
  10. Jaccard G., Wimperis S., Bodenhausen G. Multiple quantum NMR-spectroscopy of S=3/2 spins in isotropic phase: a new probe for multiexponential relaxation. J Chem Phys. 2007; 5:6282–6293. doi: 10.1002/9780470034590.emrstm0336.
  11. Madelin G., Kline R., Walvick R., Regatte R.R. A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging. Sci Rep. 2010;4:4763. doi: 10.1038/srep04763. PMID: 24755879.
  12. Veen J.W., Gelderen P., Creyghton J.H., Bovée W.M. Diffusion in red blood cell suspensions: separation of the intracellular and extracellular NMR sodium signal. Magn Reson Med. 2010 Apr; 29(4):571–574. PMID: 8464377.
  13. Lundberg P., Kuchel P.W. Diffusion of solutes in agarose and alginate gels: 1H and 23Na PFGSE and 23Na TQF NMR studies. Magn Reson Med. 1997;37(1):44–52. PMID: 8978631.
  14. Stobbe R., Beaulieu C. In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med. 2005;54(5):1305–1310. doi: 10.1002/mrm.20696. PMID: 16217782.
  15. Madelin G., Babb J., Xia D. et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology. 2013;268(2):481–491. doi: 10.1148/radiol.13121511. PMID: 23468572.
  16. Chang G., Madelin G., Sherman O.H. et al. Improved assessment of cartilage repair tissue using fluid-suppressed 23Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol. 2019;22(6):1341–1349. doi: 10.1007/s00330-012-2383-8. PMID: 22350437.
  17. Madelin G., Babb J.S., Xia D. et al. Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3 T and 7 T. Magn Reson Med. 2011;68(3):841–849. doi: 10.1002/mrm.23307. PMID: 22180051.
  18. Rooney W.D., Springer C.S. A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed. 2019; 4(5):209–226. doi: 10.1002/nbm.1940040502. PMID: 1751345.
  19. Allis J.L., Seymour A.M.L., Radda G.K. Absolute quantification of intracellular Na+ using triple-quantum-filtered sodium-23 NMR. Magn Reson. 1991;93:71–76. doi: 10.1002/mrm.23147.
  20. Madelin G., Lee J.S., Regatte R.R., Jerschow A. Sodium MRI: methods and applications. Prog Nucl Magn Reson Spectrosc. 2014;79:14–47. doi: 10.1016/j.pnmrs.2014.02.001. PMID: 24815363.
  21. Fleysher L., Oesingmann N., Brown R. et al. Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed. 2019;26(1):9–19. doi: 10.1002/nbm.2813. PMID: 22714793.
  22. Petracca M., Fleysher L., Oesingmann N., Inglese M. Sodium MRI of multiple sclerosis. NMR Biomed. 2016;29(2):153–161. doi: 10.1002/nbm.3289. PMID: 25851455.
  23. Biller A., Pflugmann I., Badde S. et al. Sodium MRI in multiple sclerosis is compatible with intracellular sodium accumulation and inflammation-induced hyper-cellularity of acute brain lesions. Sci Rep. 2016;6:31269. doi: 10.1038/srep31269. PMID: 27507776.
  24. Inglese M., Madelin G., Oesingmann N. et al. Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain. 2010;133(Pt 3):847–857. doi: 10.1093/brain/awp334. PMID: 20110245.
  25. Huhn K., Engelhorn T., Linker R.A., Nagel A.M. Potential of sodium MRI as a biomarker for neurodegeneration and neuroinflammation in multiple sclerosis. 2019;10:84. doi: 10.3389/fneur.2019.00084. PMID: 30804885.
  26. Kleinewietfeld M., Manzel A., Titze J. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22. doi: 10.1038/nature11868. PMID: 23467095.
  27. Farez M.F. Salt intake in multiple sclerosis: friend or foe? J Neurol Neurosurg Psychiatry. 2016;87(12):1276. doi: 10.1136/jnnp-2016-313768. PMID: 27352796.
  28. Fitzgerald K.C., Munger K.L., Hartung H.P. et al. Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann Neurol. 2017;82(10:20–29. doi: 10.1002/ana.24965. PMID: 28556498.
  29. Nourbakhsh B., Graves J., Casper T.C. et al. Dietary salt intake and time to relapse in paediatric multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(12):1350–1353. doi: 10.1136/jnnp-2016-313410. PMID: 27343226.
  30. Krotenkova M.V. Diagnosis of acute stroke: algorithms for neuroimaging studies: Thesis D. Sci. (Med.). Мoscow, 2011. 122 p. (In Russ.)
  31. Wetterling F., Gallagher L., Mullin J. et al. Sodium-23 magnetic resonance imaging has potential for improving penumbra detection but not for estimating stroke onset time. J Cereb Blood Flow Metab. 2015;35(1):103–110. doi: 10.1038/jcbfm.2014.174. PMID: 25335803.
  32. Nunes Neto L.P., Madelin G., Sood T.P. et al. Quantitative sodium imaging and gliomas: a feasibility study. Neuroradiology. 2018;60(8):795–802. doi: 10.1007/s00234-018-2041-1. PMID: 29862413.
  33. Thulborn K.R., Lu A., Atkinson I.C. et al. Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. Neuroimaging Clin N Am. 2009;19(4):615–624. doi: 10.1016/j.nic.2009.09.001. PMID: 19959008.
  34. Mellon E.A., Pilkinton D.T., Clark C.M. et al. Sodium MR imaging detection of mild Alzheimer disease: preliminary study. Am J Neuroradiol. 2009;30(5):978–984. doi: 10.3174/ajnr.A1495. PMID: 19213826.
  35. Konstandin S., Nagel A.M. Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. MAGMA. 2014;27(1):5–19. doi: 10.1007/s10334-013-0394-3. PMID: 23881004.
  36. Atkinson I.C., Renteria L., Burd H. et al. Safety of human MRI at static fields above the FDA 8 T guideline: sodium imaging at 9.4 T does not affect vital signs or cognitive ability. J Magn Reson Imaging. 2017;26(5):1222–1227. doi: 10.1002/jmri.21150. PMID: 17969172.
  37. Rauschenberg J., Nagel A.M., Ladd S.C. et al. Multicenter study of subjective acceptance during magnetic resonance imaging at 7 and 9.4 T. Invest Radiol. 2014;49(5):249–59. doi: 10.1097/RLI.0000000000000035. PMID: 24637589.
  38. Kearney H., Miller D.H., Ciccarelli O. Spinal cord MRI in multiple sclerosis–diagnostic, prognostic and clinical value. Nat Rev Neurol. 2015;11(6):327–338. doi: 10.1038/nrneurol.2015.80. PMID: 26009002.
  39. Kopp C., Linz P., Dahlmann A. et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2020;61:635–640. doi: 10.1161/HYPERTENSIONAHA.111.00566. PMID: 23339169.
  40. Titze J. Sodium balance is not just a renal affair. Curr Opin Nephrol Hypertens. 2014;23:101–105. doi: 10.1097/01.mnh.0000441151.55320.c3. PMID: 24401786.
  41. Wang P., Deger M.S., Kang H. et al. Sex differences in sodium deposition in human muscle and skin. Magn Reson Imaging. 2017;36:93–7. doi: 10.1016/j.mri.2016.10.023. PMID: 27989912.
  42. Kaunzner U.W., Gauthier S.A. MRI in the assessment and monitoring of multiple sclerosis: an update on best practice. Ther Adv Neurol Disord. 2017;10(6):247–261. doi: 10.1177/1756285617708911. PMID: 28607577.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Синькова В.В., Кротенкова И.А., Лясковик А.А., Коновалов Р.Н., Кротенкова М.В., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах