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Abstract

Alzheimer disease (AD) is a chronic neurodegenerative disorder and the most common cause of dementia in the elderly. Current international
guidelines for the clinical diagnosis of AD consider the diagnosis to be both clinical and biological. It requires a specific clinical phenotype and a
confirmed biological origin based on biomarkers of amyloid and tau pathology. In Russia, only a few research centers perform laboratory diagnosis
of AD using cerebrospinal fluid (CSF) biomarkers. Better access to laboratory diagnosis of AD and wider use of CSF biomarkers in clinical practice
will help to assess the true prevalence of AD in the Russian population and to select patients for targeted pathogenic therapies based on the use of
monoclonal antibodies against abnormal brain proteins, which have been actively developed in recent years. This review summarizes information
on the main CSF biomarkers of AD and their diagnostic and prognostic value.
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AnnoTanug

Bonesuy Anvyzeiimepa (BA) — xpoHuueckoe HelipodezeHepamusHoe 3a00/e8anue U camas pacnpocmpanéHHas NPULUHa OeMeHyuU 8 NOKUTOM
go3pacme. Coznacro nocneoHuMm ME)KayHapoaHblM ,DEKOMCH()(JL;L{HM no KkauHuyeckol duazqocmuxe BA, Oanblii duazHos A6a9emcs KAUHUKO-
Ouonozuueckum: oH mpebyem HAAUUUS CEYUDUUECKO20 KIUHUUECKO20 (eromuna u noomeepxdenus Guonozuueckoii npupodbi 3a0071€8aHUS
HA OCHOBAHUU Ucc/Ie008aHUs OUOMAPKePOs amunoudHoll u may-namonozuu. B Poccuu memodst nabopamoproti duaziocmuku bA ¢ uccredoga-
HUeM JIUKBOPHBIX OUOMApKepo8 Npogoosmes Juub 8 OmOesbHbIX HayuHo-uccredosamensckux yenmpax. Pacwupenue docmynHocmu nabopa-
mopHoli duazxocmuku BA u Gonee wupokoe Ucnob308aHue UKBOPHbIX OUOMAPKEPOS 8 KJAUHUHECKOU NpakxmuKe no3s0num OYeHumy peasHyio
pacnpocmpanéntocmy BA 6 poccutickoti nonynsyuu, a maxse 8 6ausxaiiuem 6yoywem omoupams nayuenmos 074 akmugHo paspadameléaemo
8 nocsedHue 200bl mapzemHoft namozexemuyecxoli mepanuu 3(160]166(1Hu}1, OCHOBAHHOII Ha NpUMEHEHUU MOHOKJIOHAJIbHbIX aHmumeJsl npomue
namonozuueckux yepedpanvHelx Oenkos. B danrom ob3ope obobujena ukgopmayus 06 ocrogHsix Ouomapkepax bA & yepedpocnunansHot xuo-
Kocmu U ux OuazHoCmuyeckotl u npOZHOCWllNECKOlj 3Hayumocmu.

Kntouegvie cnosa: 6onesuv Anvyeetivepa; demenyust; buomapkepsl 6onesHu Anvyeetimepa; TUK8OpHbLe OUOMAPKepb

Wcrounuk ¢uHaHcHpoBaHus. ABTODBI 3asBSIOT 00 OTCYTCTBUM BHELIHMX UCTOYHUKOB (DMHAHCHPOBAHMUS TIPU MPOBELEHUH
HCCJIe[l0BaHUSL.

Kondnukr uHTepecoB. ABTOpHI /IeKNapupyIOT OTCYTCTBHE SIBHBIX U NOTEHLHANbHbIX KOH(IMKTOB MHTEPECOB, CBS3aHHbIX
¢ nyO/nMKalyeil HacTosmel cTaTby.
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Introduction

Alzheimer disease (AD) is a chronic neurodegenerative
disorder and the most common cause of dementia in the
elderly [1]. Neuropathologically, AD is characterized by the
deposition of beta-amyloid (Ap) in the brain as extracellular
plaques and the formation of intracellular neurofibrillary
tangles of phosphorylated tau protein [2].

In Russia, there are approximately 9,000 registered patients
with AD [3]. However, it is estimated that more than 90% of
AD cases in Russia remain undiagnosed [4]. This is mainly
due to a lack of awareness among primary care physicians
about the early signs of AD (when symptoms are interpreted
as part of normal aging or cerebrovascular disease),
a reluctance to make the diagnosis at more advanced stages
because of the potential social consequences, or the presence
of an atypical clinical phenotype that makes it difficult to
identify the nature of the neurodegenerative process without
additional diagnostic tools.

Until recently, the diagnosis of AD was based primarily on
clinical data, namely on the development of a typical cognitive
deficit [5]. However, according to the latest guidelines from
the International Working Group for the Clinical Diagnosis of
Alzheimer Disease (2021), diagnosis of AD should be based
on both clinical and biological features and requires a specific
clinical phenotype and confirmation of biological origin
based on amyloid and tau pathology biomarkers [6]. Amyloid
pathology can be confirmed by low levels of AB, , in the
cerebrospinal fluid (CSF) or the detection of abnormal amyloid
deposition in the brain using positron emission tomography
(PET). Tau pathology can be diagnosed by high CSF levels
of phosphorylated tau protein or abnormal deposition of tau
protein identified by brain PET with an appropriate ligand.

In Russia, only a few research centers are able to perform
laboratory diagnosis of AD based on CSF biomarkers,
whereas it remains inaccessible for most Russian clinics [7-
10]. PET scans with ligands for Ap and tau proteins are not
available in every clinic in Russia. However, the need to verify
the diagnosis for targeted therapy will soon require a sharp
increase in the availability of laboratory diagnostic tools for
AD as well as a wider clinical use of CSF biomarkers (as a
more accessible method compared to PET).

The aim of this review was to summarize data on the key CSF
biomarkers of AD and their diagnostic and predictive value.

Main Pathogenic Mechanisms of Alzheimer Disease

In 1906, Alois Alzheimer first described a clinical case of
dementia in a young woman with progressive memory

loss, speech, movement and behavioral disorders, and
hallucinations.  Postmortem brain  pathomorphology
revealed macroscopic signs of extensive brain atrophy.
Using a novel silver impregnation technique for brain
histology, Alzheimer identified typical neuropathologic
changes namely extracellular amyloid plaques and
intracellular neurofibrillary tangles [11]. n 1987, the gene
APP (amyloid precursor protein), which encodes the
amyloid precursor protein located on chromosome 21, was
identified [12]. In 1992, the official amyloid hypothesis of AD
was proposed [13].

APP is a transmembrane protein found in many tissues
of the body. However, its physiological functions are not
fully understood. This protein may be involved in learn-
ing, memory and neuroplasticity, including synaptogene-
sis, which may be a key element of neuroprotection [14].
Proteolytic cleavage of APP can involve two pathways:
a non-amyloidogenic pathway that results in the production
of soluble a-amyloid and an amyloidogenic pathway that
results in the formation of insoluble and aggregation-prone
AP fragments [15]. According to the amyloid theory, a crit-
ical role in AD is attributed to the altered cleavage pattern
of the APP protein, leading to excessive production of A
peptides. A is formed by the sequential cleavage of APP by
specific enzymes such as B-secretase and y-secretase (iden-
tified as a presenilin complex) [16]. y-Secretase-mediated
APP cleavage results in the production of amyloid peptides
consisting of 36-43 amino acids [17]: a peptide consisting
of 40 amino acids (AB,,) is produced in larger quantities and
a peptide consisting of 42 amino acids (Ap,,) is produced in
smaller quantities [18]. Although different isoforms of AB
can be detected in AD patients, the levels of AB, and AB,,
and their ratio are considered the most reliable biomarkers
for AD [19].

Historically, hyperproduction of AB was thought to be the

main cause of AD [20, 21]. In recent years, however, a defect in

AP clearance mechanisms has been suggested to play a major

role [22, 23]. Yoon et al identified four main mechanisms

of AB clearance, divided into non-enzymatic and enzymatic
pathways [24]. The non-enzymatic pathway includes three
mechanisms:

1) Drainage of interstitial fluid into the blood through
periarterial Virchow—Robin spaces [22];

2) Phagocytosis by microglia or astrocytes [25];

3) Transport across blood vessel walls, mediated by some
clearance receptors (low density lipoprotein receptor-
related protein 1 (LRP1); very-low-density-low-density
lipoprotein receptor (VLDLR); P-glycoprotein) [26].

The enzymatic pathway involves the cleavage of AB by
proteases, including neprilysin [27], insulin-degrading
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enzyme [28], matrix metalloproteinase-9 [29], and glutamyl
carboxypeptidase 1I [30]. The imbalance between AP peptide
production and clearance initiates a cascade of pathological
reactions that are the main cause of AD development [15].

Intracellular accumulation of soluble amyloidogenic AP
oligomers has a neurotoxic effect even before the formation
of extracellular plaques, leading to synaptic dysfunction,
postsynaptic hyperexcitability, disruption of homeostasis,
and increased production of reactive oxygen species in
neuronal mitochondria [31, 32]. The extracellular aggregates
of insoluble fibrils containing AP peptides (amyloid plaques)
also have a neurotoxic effect. Simultaneous dysfunction of
astrocytes and microglia, the brain’s immune cells, develops.
Overproduction of inflammatory cytokines occurs and
phagocytosis of AP is impaired. These processes activate
cell signaling pathways associated with apoptosis and
neuronal death [33].

Tau protein is associated with microtubules, is expressed
primarily in neurons and is encoded by the MAPT
(microtubule-associated protein tau) gene located on
chromosome 17. Neuroimaging studies show that the onset
and location of tau pathology correspond to both the onset
and type of cognitive deficit [34, 35]. The main functions of
this protein include stimulation of tubulin polymerization,
stabilization of microtubules, and transport of intracellular
organelles [36]. Tau aggregation is a multi-step process that
likely begins with the hyperphosphorylation of tau protein
and its detachment from microtubules. During aggregation,
tau protein moves into the somatodendritic regions of
neurons where further phosphorylation and structural
changes occur. Misfolded proteins begin to aggregate,
forming freely spreading pathogenic oligomers, which leads
to further disease development, affecting healthy cells and
causing neuronal death [37].

Several mechanisms leading to tau hyperphosphorylation

and conformational changes and formation of neurofibrillary

tangles are described:

1) activation by AP proteins of specific enzymes that catalyze
hyperphosphorylation;

2) neuroinflammation triggered by AP deposition and
promoting the activation of pro-inflammatory cytokines;

3) decreased ability to degrade hyperphosphorylated tau
proteins;

4) axonal transport defect [38].

AP oligomers first induce phosphorylation of tau protein at
specific epitopes and then cause cytoskeleton collapse and
neuronal degeneration [39].

Cerebrospinal Fluid Biomarkers of Alzheimer Disease

Lumbar puncture is a routine medical procedure used for
diagnostic and therapeutic purposes. The CSF is in direct
contact with the extracellular space of the brain and
spinal cord, and its biochemical changes may reflect the
characteristics of neurodegenerative diseases. CSF is the
main biological fluid used for the diagnosis of AD [40]. A,
and AB, ,, total tau (t-tau), and phosphorylated tau (p-tauﬁ
are the best-known CSF biomarkers for AD [41].

Aﬁ 142

The AB, ,, protein in CSF is recognized as a key biomarker
for AD. Reduced levels of AB, ,,have been shown in several
international studies to be Ilnghly accurate in diagnosing
dementia and mild cognitive impairment in AD. This
biomarker has high sensitivity and specificity in diagnosing
AD at all stages [42-45]. Reduced levels of AB, ,, in CSF are
found to be the earliest pathological change in Aﬁ, preceding
AB ligand PET imaging [46]. The concentration of AB, ,,
declines long before the onset of clinical symptoms [4&1,
making this biomarker particularly suitable for early
diagnosis [48].

The mechanisms leading to decreased CSF levels of A, ,, in
patients with AD are still unclear. Some authors suggest that
this may be due to excessive deposition of AB,, in amyloid
plaques, as the aggregated state impedes transport of AB, ,,
from the interstitial fluid into the CSF [49]. Other hypotheses
include decreased production rates of AB,, [23], increased
AB,, degradation due to proteolytic breakdown [50] or
microglial phagocytosis [51], as well as increased clearance
of AB, ,, into the blood [52], although these are considered
less likely [53].

One limitation of isolated AP, , studies in CSF is the
frequent finding of decreased fevels of this biomarker
in other neurodegenerative diseases, such as cerebral
microangiopathy [54], dementia with Lewy bodies [55],
Creutzfeldt-Jakob disease [56], and frontotemporal dementia
(FTD) [57]. Although the levels of AB, ,, in AD are usually
significantly lower than in these diseases, this overlap limits
the differential diagnosis.

AB1-40

While AB, ,, constitutes approximately 10% of the total AB
peptide population, the protein AB, , is the dominant form
in the brain, CSF, and plasma [58]. the total concentration
of AP varies little between diseases, and the concentration
of AP, does not differ significantly between patients
with AD, healthy individuals, and patients with dementia
of other origin [59]. Therefore, CSF levels of AR, may be
considered the most accurate reflection of total ‘brain AB
burden, although the value of this test in isolation remains
controversial. A, levels are primarily used to evaluate the
AB, /AB, , ratio.

The AB, ,,/AB, ,, Ratio

The Ap,,/AB,,, ratio was proposed in the late 1990s to
improve the ditterential diagnosis of AD [60]. This ratio is
important and accounts for constitutive interindividual
differences in total CSF burden of A between high and low
amyloid production [61]. Studies have found a high correlation
between a lower A, ,,/AB, ,, ratio and higher levels of total
and phosphorylated tau protein [62]. Patients with a lower
AB1,/AB, ,, ratio show a faster cognitive and functional
decline and a more rapid decline in episodic memory [63].
These data demonstrate the advantage of using the AB, ./
AB, , ratio over isolated CSF levels of AB, ,, for predicting the
progression of cognitive impairment.
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Total Tau Protein

The first study that successfully evaluated total t-tau in CSF
was published in 1995 and showed that t-tau levels were
significantly higher in patients with AD compared to patients
with other neurodegenerative diseases and controls [64].
Similar results have been found in hundreds of other
studies [65]. However, elevated CSF levels of t-tau were later
found in some acute conditions (such as stroke [66], traumatic
brain injury [67], Wernicke encephalopathy [68]), as well as
in rapidly progressive neurodegenerative diseases (such as
Creutzfeldt-Jakob disease [69]). Based on the data obtained,
the level of t-tau is proposed to be used as a marker of the
activity of the neurodegenerative process or the severity of
acute neuronal damage in the brain [70]. In patients with AD,
higher levels of t-tau may predict faster clinical progression
of the disease [71].

Phosphorylated Tau Protein

Tau protein undergoes multiple post-translational
modifications, such as glycosylation [72], glycation (non-
enzymatic  glycosylation) [73], phosphorylation, etc.
Phosphorylation is the most important modification and
level phosphorylation regulates the biological activity of
the tau protein [74]. Normally, more than 30 different sites
of the protein at serine, threonine, or proline positions are
phosphorylated [75]. These modifications can control normal
biological functions of tau, such as regulating the stability of
microtubules, and lead to the development of pathological
processes associated with the protein’s ability to self-
assemble into neuronal filaments found in neurodegenerative
diseases [76].

Tau protein phosphorylated at threonine 181 (p-taul81) in
CSF is the best understood form of p-tau as an AD biomarker
used in current disease diagnosis [77]. This biomarker (in
combination with Ap,,) accurately discriminates between
patients with AD and healthy individuals and can also predict
cognitive decline in preclinical and prodromal stages of the
disease [78]. Levels of p-taul8l are significantly higher in
AD than in other tauopathies, including FTD, progressive
supranuclear palsy, and corticobasal degeneration. Therefore,
this parameter can be used in the differential diagnosis of
dementia in these conditions [57, 79, 80].

The levels of tau phosphorylated at positions 217 (p-tau217)
and 231 (p-tau231) have received considerable attention in
recent years. For example, elevated levels of p-tau2l7 in
CSF have been shown to be the most specific parameter for
detecting both preclinical and advanced stages of AD [81].
CSF p-tau217 levels in patients with prodromal stage and AD
dementia were several times higher than p-taul81 levels in the
same patients [82]. The superiority of p-tau217 over p-taul81
has also been demonstrated in studies showing stronger
correlations of p-tau217 with amyloid PET results [83].

For p-tau231, there is evidence that it is most sensitive to the
earliest manifestations of amyloid pathology in the medial
orbitofrontal cortex, precuneus, and posterior cingulate
cortex, before the threshold of pathological amyloid ligand
accumulation is reached on PET scans [84]. This biomarker

JIukBOpHbIe GrOMapKepbl Npu 60ne3HN AnblireriMepa

is thought to reach diagnostically significant abnormal levels
only at disease onset [85] and may be key to identifying
the recently described pre-amyloid phase of AD [86], which
occurs before the abnormal accumulation of AB is detectable
by PET. Stronger correlations between CSF p-tau231 levels
and amyloid PET burden in individuals without clinically
evident cognitive impairment suggest that increases in CSF
p-tau231 levels occur during the lag phase of AB protein
aggregation in the brain [84].

Markers of Neurodegeneration and Microglial
Activation

Although a hallmark of AD is the formation of AP and
tau protein aggregates in the brain, there are also typical
neuroinflammatory responses that occur in the affected
brain areas, leading to neuronal dysfunction, neuronal death,
and synapse loss [87]. Further research into the diverse
pathogenetic mechanisms of AD is needed to identify
alternative therapeutic approaches.

Accumulating data in recent years suggest an association
between synaptic loss in AD and neurogranin (Ng).
Neurogranin is a neuron-specific postsynaptic protein
that is abundantly expressed in the brain, particularly in
the dendrites of hippocampal and cortical neurons [88]. It
binds to calmodulin at low calcium ion concentrations and
regulates synaptic plasticity of neurons by modulating
Ca?*/calmodulin-dependent pathways. It is also involved
in long-term potentiation, which is important for learning
and memory processes [89]. Another hallmark of AD is an
increase in CSF levels of Ng, which gradually increases with
cognitive decline and negatively correlates with Mini Mental
State Examination scores, likely reflecting synaptic damage
due to AP aggregation with plaque accumulation [90, 91].
Some authors report a significant increase in CSF Ng
levels in AD compared to Lewy body dementia, FTD, and
amyotrophic lateral sclerosis [92], while others report only
a high correlation between CSF Ng levels and CSF t-tau and
p-taul81 levels [93]. Therefore, the value of CSF Ng level
assessment is still controversial.

Neurofilament light chain (NfL) is a scaffold protein of
the neuronal cytoskeleton that plays an important role in
axon and dendrite branching and growth. Following axonal
injury, CSF NfL levels increase and serve as a biomarker
for axonal injury and neurodegeneration [94]. In recent
years, the use of this biomarker to assess the progression of
various neurological diseases, including AD, has increased
significantly [95]. Higher CSF levels of NfL are also found
in cognitively healthy individuals with hippocampal
atrophy on neuroimaging [96] and in preclinical stages of
AD [97, 98]. Longitudinal studies in patients with AD have
shown that an increase in CSF NfL level is associated with
a more intense progression of brain atrophy and cognitive
decline. Therefore, higher NfL levels in early clinical stages
of AD appear to predict faster conversion to dementia [99].
However, the specificity of this biomarker for AD is low since
the highest levels are found in other neurodegenerative
disorders such as amyotrophic lateral sclerosis, FTD,
corticobasal degeneration, and progressive supranuclear
palsy [100].
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The pathogenesis of AD is also accompanied by reactive
astrogliosis, which is characterized by morphological,
molecular, and functional remodeling of astrocytes [101].
Glial fibrillary acidic protein (GFAP) is a type III
intermediate filament protein that is predominantly
expressed by astrocytes in the CNS [102]. In animal
models, high levels of GFAP expression are found in
astrocytes of the hippocampus, the corpus callosum and
the cerebral peduncles [103]. Its expression is significantly
increased in neurodegenerative diseases, including AD,
reflecting neuroinflammatory processes and astrocyte
activation [104]. In AD, elevated CSF levels of GFAP are a
potential marker of progressive cognitive impairment; these
levels have been shown to increase as cognitive deficits
progress [105]. However, these changes are not specific to
AD, because an increase in GFAP levels with progressive
cognitive impairment has also been described in patients
with Parkinson’s disease, FTD, multiple sclerosis, and other
neurological disorders [106].

These biomarkers are being studied for research purposes,
but are not yet used in clinical practice due to insufficient
specificity for diagnosing AD.

Clinical Use of CSF Biomarkers for AD in Neurology

As mentioned above, according to the International Working
Group Recommendations for the Clinical Diagnosis of
Alzheimer’s Disease (2021), a diagnosis of AD requires the
presence of a specific clinical phenotype and confirmation
of the biological origin of the disease based on biomarker
testing [6]. These guidelines distinguish between common
and rare AD phenotypes. The main clinical phenotypes of AD

include the classic amnestic (hippocampal) variant, posterior
cortical atrophy, and the logopenic variant primary progressive
aphasia. Rare phenotypes include frontal (behavioral/
dysregulation) variant, corticobasal syndrome, and semantic
and agrammatic variants of primary progressive aphasia. It is
proposed to establish probability levels for AD as the primary
diagnosis based on the combination of the clinical phenotype
and the results of key biomarker testing (in CSF or by PET).
The diagnosis of AD is categorized as definite, probable, and
possible, with additional categories of unlikely and excluded.
For controversial cases, recommendations for further patient
evaluation are provided (Table 1).

Conclusion

According to international guidelines, the key CSF biomark-
ers for the clinical diagnosis of AD (gold standard) include
AB, ., AB,,/AB,,, ratio, and p-taul81. CSF t-tau levels can
be used to assess the activity of the neurodegenerative
process and predict the clinical progression of the disease.
Novel biomarkers of tau pathology (including CSF p-tau217
and p-tau231 levels) could also be used to diagnose AD, be-
cause they are both highly sensitive and specific even in the
preclinical stages of the disease. The clinical applicability of
markers of neurodegeneration and astrocyte activation (Ng,
NfL, GFAP) requires further discussion, so their use is cur-
rently warranted only in research settings.

The wider availability of CSF biomarkers in Russian clinical
practice will allow for the assessment of the true prevalence
of AD in the Russian population, as well as the selection of
patients for targeted therapy, which has been actively deve-
loped in recent years.
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Table 1. International Working Group Recommendations for the Clinical Diagnosis of Alzheimer's Disease (2021)

Phenotype Likelihood of AD

Common clinical phenotypes in AD

as a primary diagnosis

Further investigation

(amnestic variant, posterior cortical atrophy, logopenic variant primary progressive aphasia)

Amyloid positive; Highly probable —
tau positive established
Amyloid positive; Probable

tau unknown

Amyloid posmve; Probable

tau negative

Tau positive; Possible
amyloid unknown

Tau pqsmve; . Possible
amyloid negative

Amyloid negative; Unlikely

tau unknown

Amyloid gnknown; Unlikely

tau negative

Amyloid unknown; Highly unlikely —
tau negative excluded

Amyloid unknown;

Non-assessable
tau unknown

Uncommon clinical phenotypes in AD

None required

Consider a tau measure (PET, CSF)

Consider an additional tau measure (PET, CSF)

Consider an amyloid measure (PET, CSF)

Consider an additional amyloid measure
(PET, CSF)

Full investigation of cause and consider a tau
measure (PET, CSF)*

Full investigation of cause and consider an amyloid
measure (PET, CSF)*

Full investigation of cause*V

Consider tau and amyloid and measure (PET, CSF)

(frontal variant, corticobasal syndrome, semantic and agrammatic variants of primary progressive aphasia)

Amyloid positive;

" Probable
tau positive
Amyloid positive; Possible
tau unknown
Amyloid posﬂwe; Possible
tau negative
Tau positive; .
amyloid unknown Unlikely
Tau positive; .
amyloid negative Uil
Amyloid negative; Highly unlikely —
tau unknown excluded
Amyloid negative; Highly unlikely —
tau negative excluded
Amyloid unknown; Highly unlikely —
tau negative excluded

Amyloid unknown;

Non-assessable
tau unknown

None required; careful follow-up needed:
an incongruent clinical phenotype
and neurodegeneration pattern should trigger
a new investigation*

Consider a tau measure (PET, CSF)

Consider an additional tau measure (PET, CSF)

Full investigation of cause and consider an amyloid
measure (PET, CSF)*

Full investigation of cause*

Full investigation of cause*V

Full investigation of cause*V

Full investigation of cause*V

Full investigation of cause and consider tau and
amyloid measure (PET, CSF)*

Note. *Full investigation of cause depends on the specific clinical phenotype and can imply, for example, "®F-fluorodeoxyglucose PET (FDG-PET), dopamine transporter imaging with single-
photon emission computed tomography (DaT-SPECT), serum progranulin assay, genetic analysis, oculomotor recordings, or electromyoneurography. VConsider a new Alzheimer's disease

biomarker investigation only if there is a reasonable doubt about the validity of the biomarker results.
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