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Abstract

Introduction. According to the 2021 WHO Classification of Tumors of the Central Nervous System (CNS) and the 2023 Clinical Practice Guidelines
on the Drug Management of Primary CNS Cancers, the first step of molecular genetic testing to identify the morphological type and malignancy
of adult-type diffuse gliomas is the detection of isocitrate dehydrogenase (IDH) mutation status. However, tumor tissue biopsy as the conventional
diagnostic standard has a number of limitations that can potentially be mitigated by applying the principles of radiomics to the interpretation of
magnetic resonance (MR) images.

The aim of our study is to develop a radiomics model for IDH mutation status prediction, which can be applied to primary diagnostic imaging in
patients with suspected adult-type diffuse gliomas.

Materials and methods. We conducted a retrospective comparative statistical analysis of radiomic features extracted from 46 conventional brain
MR images of the patients with adult-type diffuse gliomas and identified IDH mutation status using the Random Forest algorithm of machine learn-
ing in combination with various preprocessing methods of the source imaging data and a semi-automated LevelTracing tool used for segmentation
of the regions of interest (ROI).

Results. The most effective combination of tools for preprocessing, segmentation, and classification was found to be Scalelntensity, LevelTracing,
and Random Forest, respectively. Using this combination, we verified the reliability of six radiomic predictors identified at the previous study stage.
These features were all associated with IDH mutation status, and most of them capture texture heterogeneity in the ROIs at the voxel level. We were
also able to improve the prognostic performance of our classification model up to AUC = 0.845 + 0.089 (p < 0.05).

Conclusion. Based on a small, technically heterogeneous sample of routine MR imaging data, we developed a multiparametric model of IDH
mutation status prediction in the patients with adult-type diffuse gliomas. Our conclusion is that relatively uniform preprocessing techniques based
on uniform voxel intensity changes, which allow to preserve the structural detail, are feasible in clinical practice. The identified radiomic, likely voxel-
based, features reflect the severity of perifocal vasogenic edema and the measure of intratumor morphological heterogeneity. We plan to assess the
reproducibility of the study results using similar medical imaging data from open sources and to develop a color mapping technique for the ROIs to
facilitate visual interpretation of quantitative radiomic data.
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AnHoTanug

Besedenue. Coznacro knaccucpukayuu BO3 onyxoneti LJHC 2021 2. u npakmuueckum pexoMeHoayusm no JexkapcmeeHHoMy JeUeHUI0 NepeuUtHbLX
onyxoneti LIHC 2023 2., onpedenerue cmamyca usoyumpamdezudpozeHasst (IDH) sensemes HauanbHoLM 3Manom MoekynspHo-eeHemuueckozo
mecmuposanus npu udenmugpuxayuu namomopponozuueckux opm dupysusix 2nuom e3pocnslx. OHako mpaduyuorHwLli duazHocmuyeckuil
cmardapm, nodpasymesaiowul uccredosarue OuoncuiiHozo mamepuana, o6nadaem paodom 0zpaHuUeHull, NOMeHYUAILHO HUBETUPYeMbX BHeope-
HUEM 8 ANI20pUMM UHMepnpemayuu mpaouyuoHHsIX MazHumHo-peaoanchvix (MP) uzobpaxeHuil npuHyunos paduomuxu.

Llens uccnedosanus — paspabomka npuMeHUMOL 8 YCII08UAX NepautHbLx OUAZHOCMUUECKUX Meponpusmuil paduomuteckoli Modenu npozHO3Upo-
ganus IDH-cmamyca dughpysnbix 2nuom 83pocbix.

Mamepuanst u memodot. [locpedcmeom npumenenus memoda MawurHozo 08yuenus Random Forest ocywecmensu pempocnekmugHbiii cpas-
HUMebHbIL cmamucmuyeckuti aHanu3 paduomuueckux xapakmepucmuk 46 mpaduyuorrsix MP-uccnedosanuii 20108H020 M032a nayueHmos
¢ OuchhysHbLMU 27LOMAMU 83POCTbIX U usgecmHblm IDH-cmamycom 6 3asucumocmu om uda npedeapumesbHoli 00padomkuy ucxo0Hbix OaHHbLX
BU3YANIU3AYUY C UCNOTb308AHUEM NOTYABMOMAMUIUPOBAHHOZ0 UHCMPYMeHMA ceemeHmayuu 3ox unmepeca LevelTracing.

Pezynsmamot. Yemarosnera Haubonee aghpekmueHas KoMOUHALUS UHCTPYMEHIMO Npenpoyeccutzd, ceemenmayuu u kaaccuuxayuu — Scalelntensity,
LevelTracing u Random Forest coomeemcmeenHo. C eé nomoubio eepughuyuposaa 0ocmosepHocmb 6 6b1967IEHHbIX HA NPOULIOM Imane uccnedoea-
HuUS paduomuteckux npedukmopos IDH-cmamyca, 8 GonbuiuHcmse A6NHIOUUXCS XaPAKMePUCMUKAMU MeKCMypHOLI HeoOHOPOOHOCMU 30H UHMepeca
Ha BOKCEJILHOM YPOBHe, @ makKe yseudera nposHocmuyeckas aexmusrocmy knaccugpuxayuonroti modenu do AUC = 0.845 + 0.089 (p < 0.05).
3axmouenue. Paspabomara mymmunapamempuyeckas npedukmusHas modens IDH-cmamyca npu ducbhysubix 2nuomax e3pocibix Ha ocHose
pyMuHHbLX OanHbtx MP-gusyanusayuu 8 yciosusx mazoll mexHutecku pasHopooroti esi6opku. Coenar 8vi600 0 yenecooGpasHoCMu Ucnoib3o-
8AHUS OMHOCUMENLHO YHUGUYUPOBAHHBLX Memodos npedsapumenyHoli 00pabomku u300paxeHutl, npednonazauyux pasHoMepHble U3MeHeHUS
UHMeHcUsHOCMU 80Kceeli ¢ cOXpanHoil cmpykmypHoti demanu3ayueti. BoisenenHvle paduomuteckue xapakmepucmuxy, 6epOSMHO, HA BOKCETLHOM
YPOBHE UMTIOCMPUPYIOM BbIPAXEHHOCMb NEpUoKabHOZ0 8a302eHHO20 OMEKA U (heHOMeEHA BHYMPUONYX0Ne60Li Mophonoauteckoti zemepozeH-
Hocmu. TInanupyemes oyerka 80cnpou3go0UMOCTU NOJYHeHHbIX Pe3yNbMamos Ha OCHOBE GHANOUYHBIX OAHHBIX MeOUYUHCKOL eu3yanusayuu
U3 OMKPbIMbLX UCTOUHUKOS, 4 MAKKe paspadomka MemoouKu Ygemosozo KapmuposaHus 30H UHMEPECA C Uelbio NPUBHECEHUS neMeHma cy0s-
eKMUEHO20 BU3YANU3AYUOHHOZ0 AHATU3A 6 NPOYECC UHMEPNPeMayUlU KONUHeCMEeHHbLX padUOMULECKUX OQHHBIX.

Knrouegvie cnosa: duggysHvle enuombl 83pocivlx; Mophonozuteckas 2emepozeHHOCMy; paouo2eHOMUKd; paduoMuKkd;, MazHUmHo-
pesonaHcHas momoepagus; IDH-cmamyc

druueckoe yrBep:xaenue. VccnenoBanue 0106peHo nokabHbM aTHYecKiM KomuTeToM HMULL um. B.A. Anmasosa (mpoTokon
Ne 10-22 ot 03.10.2022).
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Introduction

Glioblastoma tends to be found in older adults, rarely
< 55 yo, with the highest incidence rates among all primary
CNS malignancies of 48.6% (annual incidence rate: 3.2-
3.4 per 100,000 population) [1]. One-year survival rate does
not exceed 13%, even in patients aged 20-44 years [2].
Glioblastoma is the most aggressive type of brain tumor. In
most cases, a patient dies within 14-16 months, assuming
chemotherapy and radiotherapy treatment [3].

Up to 2021, the grading of gliomas was primarily based on
histological features [4]. Currently, various biomarkers are
used to derive additional information valuable for the diag-
nosis and prognosis of the disease and impacting the treat-
ment planning.

The first basic molecular genetic markers of primary CNS tu-
mors are mutations in the IDH1/IDHZ2 genes and 1p/19q codele-
tion. Detecting these markers helps narrow down the differential
diagnosis options and make a definitive diagnosis [5].

According to the 2021 WHO Classification of Tumors of the
CNS, IDH-wildtype (IDH-WT) glioblastoma, IDH-mutant as-
trocytoma, and IDH-mutant/1p/19g-codeleted oligodendro-
glioma belong to the adult-type diffuse glioma family [6, 7].

The grading of gliomas is no longer strictly histological. As-
trocytomas are now graded as CNS WHO grade 2, 3, or 4;
oligodendrogliomas as CNS WHO grade 2, 3; and glioblasto-
mas are assigned to CNS WHO grade 4. In the previous clas-
sification, the grading of gliomas was based predominantly
on histological features such as necrosis, microvascular pro-
liferation, nuclear atypia, etc., while the current 2021 WHO
classification of tumors of the CNS mandates genetic testing
of tumor tissue and prioritizes the identified genetic features
in the differential diagnosis [8].

In the adult-type diffuse glioma family, only glioblastoma is
characterized by the absence of IDH mutations. Mutation in
the IDH genes is the key feature of molecular diagnostics for
grade 24 adult-type diffuse gliomas and secondary glioblasto-
mas (grade 1 gliomas have no mutations in the [DH genes) [8].

The minimum scope of diagnostic assessments for a suspect-
ed glial tumor includes a 3-plane brain MRI with standard
MRI pulse sequences [8]. In routine clinical practice, the di-
agnostic use of these data is often limited to the identifica-
tion of tumor location and size. However, rapid advances in
radiogenomics over the past 15 years enabled expanding the
potential use of MRI data to non-invasive prediction of mo-
lecular genetic characteristics of detected neoplasms.

Radiogenomics links radiomics, an original methodology that
extracts and classifies digitized, predominantly textural fea-
tures of a medical image, to molecular genetics, revealing
statistically significant correlation between radiomic features
unavailable at routine visual interpretation and histological
and molecular characteristics of the tumor [9)].

If radiomics models can reach an adequate level of predictive
performance, the current diagnostic paradigm requiring tissue

biopsy analysis will potentially be inferior to the radiomics-
based neuro-oncology imaging in a number of factors.
Conventional molecular genetic testing is incomparably time-
consuming, which can adversely affect patient triage. At
present, stereotactic needle biopsy is the least invasive method
of diffuse and deep-brain tumor verification. It is still associated
with numerous complications, with intracranial hemorrhage (in
5.8% of patients) being the most frequent and life-threatening
of them [10]. In the case of intratumor heterogeneity, multiple
biopsies may be required, often worsening the patient’s
condition, whereas radiomics approach allows non-invasive
evaluation of the tumor substrate.

This advantage is also of great value for the treatment planning
in patients who are ineligible for radical resection of the
tumor or stereotactic needle biopsy due to contraindications
to surgery or anesthesia, or when the tumor is located close to
functionally significant regions of the brain [11]. In addition,
virtual reality diagnostic tools are cost-effective [12].

The importance of radiogenomics approach in oncology,
particularly the IDH mutation status prediction in glial
tumors, has significantly increased over the past decade,
especially in international contexts [13, 14]. However, the
high-tech neuroimaging techniques employed in many
studies are not available at the initial evaluation of a patient
with suspected glioma [15, 16]. Moreover, the research in
this area also aims at improving the predictive performance
of the developed models, not only by focusing on specialized
medical image data but also by testing various methods
of image preprocessing, tools for extracting radiomic
features, and methods for their statistical processing. The
current trend is to include clinical and anamnestic data
significantly correlated with a particular tumor type (age,
gender, Karnofsky Performance Status, etc.) and even the
elements of the radiologist’s subjective interpretation into
the datasets for the predictive model training [17, 18].

The choice of datasets for model development obviously
requires standardization. Otherwise, optimistic theoretical
results will be unreproducible and of limited use in routine
diagnostic practice.

In the four years since the last revision of the 2021 WHO
classification of tumors of the CNS, a number of studies
published abroad presented results showing promising
performance of the predictive models. W. Rui et al.
developed a model for IDH mutation status prediction
using T2-FLAIR and TI1FS-CE MRI pulse sequences.
However, to improve the model accuracy, they included
data on quantitative susceptibility mapping (QSM) into
the analysis. The ROC AUC score for the model based on
T2-FLAIR and for the combination of T2-FLAIR, T1FS-CE,
and QSM was 0.69 and 0.88, respectively [19]. S. Zhong et
al. focused on the analysis of routine MRI pulse sequence
data (T1, T1FS-CE, T2). However, they also used natural
language processing (NLP) models based on semantic
analysis of MRI reports and other documented clinical and
anamnestic information. These data were subsequently
processed and incorporated into the training datasets
in order to purposely increase the model predictive
performance (AUC = 098 for IDH-mutation status
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Table 1. Distribution of tumors by morphological type, malignancy grade, and IDH mutation status

Diagnosis n %
Glioblastoma G4 24 52.2
Oligodendroglioma G3 7 15
Astrocytoma G2 2 43
Morphological type, malignancy grade
Astrocytoma G3 5 11
Astrocytoma G4 5 11
Oligodendroglioma G2 3 6.5
WT 24 52
IDH mutation status
M 22 48

prediction). In our opinion, such an approach makes
this model somewhat useless in the third-party medical
facilities using another natural language [18].

The quality of the extracted radiomic features depends
significantly on the MR image preprocessing techniques [20].
Thus, at this stage, there is a need to develop radiomics-
based models to predict IDH mutation status in the patients
with adult-type diffuse glioma and to standardize this process
to pursue the potential applicability of the results when using
these models in primary differential diagnosis.

Our study considers the results obtained during its previous
stage and continues the search for the most effective
preprocessing tool and an optimal classification model [21,
22]. Noteworthy, a predictive model for IDH mutation status
based on the updated 2021 WHO classification of tumors of
the CNS allows to rule out an entire morphologic type of
tumor in a non-invasive manner already at the initial stage
of the differential diagnosis: namely, primary glioblastoma
IDH-WT, which is characterized by an almost twice worse
prognosis compared to the IDH-M entity and by a poor
response to radio- and chemotherapy [8].

The aim of our study is to develop a radiomics model for IDH
mutation status prediction, which can be applied to primary
diagnostic imaging in patients with suspected adult-type
diffuse gliomas.

Materials and methods

We retrospectively analyzed primary brain MRI data
yielded from 46 patients aged 18—84 years with adult-type
diffuse gliomas and subsequently identified IDH mutation
status. The data were retrieved from the archives of the
V.A. Almazov National Medical Research Centre (n = 31) and the
N.P. Napalkov Cancer Center (n = 15) for 2021-2023 (Table 1).

Inclusion criteria:

o verified primary glial tumor;

* identified IDH mutation status;

o T2-FLAIR pulse sequence data documented in the MRI
report.

Non-inclusion criteria:

* a history of previous surgery in the ROl chemo- and ra-
diotherapy;

* brain malformations;

o artifacts compromising interpretation of tissue transfor-
mations in the ROL

Table 1 shows that the majority of the neoplasms were grade
4 glioblastomas, since, according to the 2021 WHO classifi-
cation of tumors of the CNS, only this morphological type
of tumor is characterized by the absence of IDH mutations.

The MR scans were performed with different types of tomo-
graphs at 1.5 and 3 T, so the images had to be pre-processed.
MRI parameters:

o pulse sequence, plane: T2FLAIR, ax;

e slice thickness: 2-6 mm;

o field of view: 186 x 230, 199 x 220, 201 x 230, 226 x 250;

o time of repeat (TR), ms: 4,800—11,000;

¢ time of echo (TE), ms: 61.00-365.27.

At this study stage, we compared the effectiveness of the

following raw data preprocessing techniques (transforms):

1. Normalization of image intensity distribution: to bring it to
the standard normal distribution where the mean is 0 and
the standard deviation is 1.

2. Image scaling (Scalelntensity): to bring image intensity
values to the predefined range (from 0 to 1).

3. Image contrast adjustment via y-correction (AdjustContrast):
to highlight structures and details crucial for the analysis.

4. Histogram normalization: to redistribute voxel intensity
values for a normal (Gaussian) distribution of frequencies
throughout the entire range of values.

The transforms were performed with MONAI library generic
interfaces [23]. All the normalization methods were applied to
each image individually. Non-normalized data were used for
comparison, allowing us to evaluate the effect of preprocess-
ing on the study results.

ROIs were segmented by a radiology expert using LevelTrac-
ing, a semi-automatic segmentation tool in 3D Slicer open-
source software. The choice of this tool, grounded by the
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results of our comparative effectiveness research and its op-
eration principle, has been described previously [22]. We also
used neuro-fuzzy ensembles for brain tumor segmentation'.

The ROIs traditionally covered the entire area of the tumor
lesion with hyperintense MR signal on T2-FLAIR images,
including cystic and/or necrotic, hemorrhagic, and calci-
fied components of the tumor. Such coverage is intended to
significantly speed up the segmentation of the primary MR
image and to standardize it to some extent by eliminating
potential discrepancies in the identification of the tumor
structural components due to operator-dependent variations
in image segmentation.

For each ROI, 851 radiomic features were extracted: 107 ori-
ginal features from 7 radiomic classes and additional data ob-
tained by discrete wavelet transforms (DWT) with a wavelet
filter computing eight decompositions (HHH, HHL, HLH, HLL,
LHH, LHL, LLH, LLL) per segment?.

To convincingly demonstrate the effect of various prepro-
cessing methods on the performance of the developed pre-
dictive model, we have selected such radiomic features that
showed the best results in the previous stage of our study
[22], namely:

Sphericity — a measure of the roundness of the ROI shape
relative to a sphere with the smallest possible surface area,
which sphericity is equal to 1 (value range is 0-1; this
parameter does not reflect textural features, so it cannot be
filtered out by wavelet decompositions);

Dependence Entropy — a measure of dependence variance
between voxel intensity values (computed with HHH wavelet
decomposition);

Dependence Non-Uniformity Normalized — a measure of the
dependence variance between different grey levels throughout
the image (computed with HHH wavelet decomposition);

Dependence Variance — a measure of dependence variance
between the gray levels throughout the image, which
quantifies the difference between a voxel intensity value and
the intensity value of its neighbors (computed using HHH-
and HLN wavelet decompositions);

Small Area Emphasis — incidence of small zones with the
same gray level. This feature reflects texture heterogeneity
by highlighting frequently occurring small areas of equal
intensity. High values of this feature may indicate a more
homogeneous texture of the image, whereas low values
indicate complex and heterogeneous structures (computed
with a wavelet decomposition) [24].

To evaluate the classification performance of our model, we
used the following metrics: accuracy, recall, precision, F1
score, and AUC score.

'Cardoso M.J., Li W., Brown R. et al. MONAI: an open-source framework for deep learning in
healthcare. 2022. URL: https://arxiv.org/pdf/2211.02701v1

’Radiomic  Features —  pyradiomics  2.2.0.post35+g8daldb7  documentation.  2016.
URL: https://pyradiomics.readthedocs.io/en/latest/features.html

The dataset (46 brain MRI reports) was divided into two
groups: 31 reports were used as a training sample, and
15 reports were used as a test sample. To evaluate the
predictive performance of the model and given the limited
input data, we performed 5-fold cross-validation of the
dataset. The developed model was evaluated by each feature
individually using the AUC score. This approach ensured the
reliability of the metrics obtained for assessing the stability
and predictive performance of the model when applied to
different subsets of the input data.

To train our classification model, we used Random Forest, a
decision tree ensemble algorithm, which incorporates a bagging
technique to aggregate predictions from different training
sets. Random Forest trains each decision tree independently
on random subsets of the input data, ensuring diversity of
the ensemble models and considering non-linear correlation
between the features. The number of decision trees was limited
to 50 to balance the variance of the model with its stability.

The null hypothesis assumed that the selected image
preprocessing techniques do not affect the accuracy of IDH
mutation status classification. In other words, the difference
between the mean AUC values for the features extracted
using different preprocessing techniques and for the
unprocessed data is statistically insignificant. The alternative
hypothesis states that the preprocessing techniques do affect
the accuracy of IDH mutation status classification, which is
presented by statistically significant differences in the mean
AUC values compared to the unprocessed data.

To evaluate the reliability of the model for the study results,
we used Student’s t-test, which allows us to compare the
distribution of quality metrics for different features (AUC)
and detect statistically significant differences for this
parameter. The significance level was calculated for each
feature individually.

Results

Using the test sample, we calculated predictive performance
values for the ROI radiomic features, which significantly
correlated with IDH mutation status, according to the applied
methods of source image normalization (Table 2).

For the Sphericity feature, we found no statistically significant
difference between the preprocessed and unprocessed
data, suggesting that the effects of different preprocessing
techniques may vary depending on the feature being analyzed.

Of particular note is an experimental predictive model based
on a set of radiomic features. This model demonstrated a
significant improvement in classification quality due to
preprocessing techniques applied (p < 0.05).

In this experimental model, preprocessing with the
Scalelntensity transform considering the entire set of
radiomic features yielded the best result. The highest
scores of feature importance in this model had dependence
variance (24.3%) and dependence entropy (22.0%), as the
most significant for classification. They were followed by
dependence non-uniformity normalized (19.3%) and small

34 Annals of clinical and experimental neurology. 2025; 19(1). DOI: https://doi.org/10.17816/ACEN.1251



OPUMMHANBHBIE CTATbIA. Knuhnyeckas HeBponorus

Paguomuka B gnarHocTuke rmuo6nacTombl

Table 2. Effects of image preprocessing on accuracy of IDH mutation status prediction (AUC score), M £ SD (p)

o Image intensity . . Histogram
Radiomic feature Unprocessed normalization Scalelntensity AdjustContrast normalization
Sphericity 0.645 + 0.197 0.635 + 0.223 0.660 + 0.194 0.65+0.177 0.685 + 0.235
DA (0.695) (0.713) (0.464) (0.237)
Dependence 0.76 £ 0.141* 0.585 + 0.161
Entropy_HHH 0.59+0.142 (0.042) 0.665 +0.144 (0.28) | 0.725+0.101 (0.101) (0.325)
Dependence e *
Non-Uniformity ogssz0t6 | CHOTINE | orm0z01000tse) | MO0 0'6‘;’8 §4°3')1 19
Normalized_HHH ’ ) '
Dependence 0.68 + 0184 0.670+0.107 0.840 £ 0.119* 0.795 £ 0.141* 0.56 +0.142
Variance_HHH DA (0.589) (0.023) (0.036) (0.358)
Dependence 0.650 + 0.094 0.535+0.211 0.66 + 0.051 .
Variance_ HHH 0.355+0.126 (0.566) (0.572) (0.687) 0.825 = 0.087* (0.013)
Small Area 0.48 + 0.081 0.725 £ 0.094 0.650 + 0.157 0.665 + 0.111 0.695 + 0.187
Emphasis_LHL oS (0.089) (0.532) (0.536) (0.753)
Al features 0.63+0.088 | 0.815 £ 0.058* (0.020) | 0.845 * 0.089* (0.005) | 0.805 + 0.09* (0.037) | 0.82 * 0.127* (0.027)
Note. p < 0.05 compared to the unprocessed data.
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Fig. 1. Box plot displaying the results of 5-fold cross-validation of image pregrocessin with the Scalelntensity transform.

1 — Sphericity; 2 — Dependence Entropy HHH; 3 — Dependence Non-uni

ormity

5 —Dependence Variance HLH; 6 — Small Area Emphasis_LHL; 7 — all features.

area emphasis (18.5%). Sphericity and dependence variance
had lower scores (8.2% and 7.7%, respectively); nevertheless,
they contribute to classification improvement when combined

with other features.

ormalized HHH; 4 — Dependence Variance HHHH,;

The box plot in Fig. 1 presents the spread of prognostic
values for radiomic features extracted with the Scaleintensity
transform (as the most effective preprocessing technique)
and statistical characteristics of each subset. Classification
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Fig. 2. Quantitative distribution of voxels with specific gray levels throughout all dataset images.

A — raw data; B — Scalelntensity transformed data.
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Fig. 3. Violin plot outlining sphericity values.

models considering the entire set of features demonstrate the
highest predictive performance.

The Scalelntensity transform adjusts the image intensity in
the predefined range by applying the linear transformation to
each element of the array. This approach allows comparing
images acquired with different scanning methods.

The quantitative distribution of voxels with different gray
levels across all dataset images prior to and after applying
the Scalelntensity transform is shown in Fig. 2.

Noteworthy, normalization had no effect on the sphericity
value, as the sphericity formula uses only the volume and
area of the segmentation zone. Differences in the AUC score
for this feature can be explained by 5-fold cross-validation of
the training sample, so the model was tested on five different
subsamples. Distribution of the sphericity values within the
entire dataset is presented in Fig. 3. A greater number of
tumors with relatively high sphericity values were found in
the IDH-M subgroup. The tumor with the highest sphericity
value in the sample had no mutation in the IDH gene.

Figure 4 shows the ROC curve and confusion matrix for the
IDH mutation status predictive model in adult-type diffuse

n
8 - 3 IDH=0
H

74 —
6
5
4]
3
2]

LI =

0.1 0.2 03 0.4 05
Sphericity

gliomas based on the above-mentioned six radiomic fea-
tures and trained with Random Forest classification, where
the source images were normalized via the Scalelnten-
sity transform. The AUC score for the developed model is
0.845 % 0.089, and the key metrics are accuracy 0.866; preci-
sion 0.875; recall 0.875; F1 score 0.874. According to the con-
fusion matrix, the model produced 1 false-positive result and
1 false-negative result from the test sample of 15 reports. In
other 13 cases, IDH-M and IDH-WT mutation statuses were
classified correctly.

Discussion

At the previous study stage, we evaluated the predictive
performance of six individual IDH mutation status predictors,
extracted from ROIs in the MR scans, which were preprocessed
by histogram matching and the Scalelntensity transform,
the latter yielding the best results [22]. At the current study
stage, the evaluation of the predictive performance of the
combined model incorporating four different preprocessing
techniques showed a similar trend. Of those four tools, only
AdjustContrast does not bring the signal characteristics of
images to uniform ranges of predefined or mean values, as
it aims to emphasize texture differences with y-correction by
augmenting or reducing the general contrast of the image.
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Fig. 4. ROC curve and confusion matrix of predictive model for IDH mutation status (test sample).

A

B

Fig. 5. Diffuse glioma (T2-FLAIR, ax).

A — raw data;

At the previous study stage, we found that the majority of the
radiomic predictors characterize ROl heterogeneity by gray
level intensity of the voxels. Hence, the higher performance
of the model built using the method of the current study
stage can be associated with the contrast adjustment. Gamma
(y) value adjusts the contrast as a function: y < 1 reduces
contrast, and y > 1 augments contrast. At the current study
stage, y was > 0.9, which means that the image contrast was
slightly reduced (Fig. 5).

AdjustContrast is a crucial preprocessing technique used, for
example, for computer vision tasks. Contrast adjustment im-
proves the overall sharpness of the image, thereby enhancing
the differentiation of its structural elements. This tool is pri-
marily used for low-contrast images, where details are chal-
lenging to discern due to the insufficient difference between
relatively light and dark regions®.

The obtained result indicates that the preprocessing of source
data from routine MRI based on contrast adjustment signifi-
cantly improves the predictive performance of the developed
model by reliably highlighting the key areas of altered MR

SContrast Adjustment — MATLAB & Simulink.
URL: https://www.mathworks.com/help/images/contrast-adjustment.ntml
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— AdjustContrast transformed (y = 0.9).

signal, which is essential for the qualitative analysis of the
MR image (see Table 2). Adjustment, almost imperceptible to
the human eye, increased the model predictive performance
by 175% compared with the model based on the raw data.
Thus, y-correction is not only critical for high-quality presen-
tation of images and videos in different media formats (which
is important considering the human-dependent perception of
the image) but also a promising tool for standardization of
raw medical imaging data preprocessing. However, we noticed
slightly pronounced but significantly higher effectiveness of
other normalization methods, which apply averaging over the
signal amplitudes or bring them to a predefined range, for
instance, the Scalelntensity transform, which demonstrated
the highest AUC score.

Let us compare these image preprocessing techniques.
The Scalelntensity transform is meant to uniformly in-
crease the brightness of an image by adjusting the values
of all its voxels. As a rule, the voxel values are scaled to the
predefined value range by applying the linear transforma-
tion. For example, the Scalelntensity transform can scale
voxel values, which were initially in the range of 0-255,
to a predefined range, often improving the quality of image
interpretation without significant change of voxel-to-voxel
ratio. In other words, Scalelntensity allows us to augment
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Table 3. Scalelntensity vs AdjustContrast: a brief comparison of two medical imaging preprocessing techniques.

Preprocessing technique Scalelntensity

Effect Uniform brightness enhancement

Risk of detail loss

Noise management

Application

Risk of clipping

Low: image details are visible at any brightness level

May reduce noise levels

More suitable for comparative analysis

Low: dynamic range preserved

AdjustContrast
Greater differentiation between light and dark areas

Medium: risk of detail loss with aggressive contrast
adjustment

May cause higher noise levels
Limited to specific imaging data

High: risk of detail loss due to distorted color
characteristics in too light/too light areas

Flg 6. Diffuse glloma (T2-FLAIR, ax).

— raw data;

the brightness of the image, preserving the texture of dark
and light areas (Fig. 6). Uniform adjustment mitigates the
risk of information loss due to critically excessive voxel
intensity values.

This method also helps denoise MR images and facilitates the
image structure interpretation by avoiding artifacts, which
may appear with more aggressive contrast adjustment. In
comparative analysis, Scalelntensity brings a certain consis-
tency to images with different noise levels, which is crucial
for scientific imaging data analysis*. In turn, contrast adjust-
ment modifies the difference between the darkest and bright-
est parts of the image by expanding or shrinking the range
of voxel values, which improves visibility within the range
by making dim areas darker and bright areas brighter. While
AdjustContrast can help improve blurred image details and
textures, it can also cause the risk of the detail loss in the
clipping areas with too bright or dark colors. Unlike Scaleln-
tensity, which transforms all voxels uniformly, AdjustContrast
improves the image non-uniformly by highlighting certain ar-
eas while shadowing texture in other areas, which may com-
plicate the interpretation of the image®.

Table 3 summarizes the main arguments, which may explain
the significant difference between the predictive performance
of models built using these two preprocessing techniques.

“Transforms — MONAI 1.4.0 Documentation. 2024.
URL: https://docs.monai.io/en/stable/transforms.html#scaleintensity
STransforms — MONAI 1.4.0 Documentation. 2024.
URL: https://docs.monai.io/en/stable/transforms.html#adjustcontrast

Scalelntensity transformed data.

Li et al. also demonstrated that although intensity
normalization methods applied to source brain MRI images
cannot completely remove the scanner effects at the
radiomic feature level, they can make the neuroimaging
data comparable for the subsequent analysis and increase
the reliability of radiomic predictors [25]. Moreover, these
methods appear to have a wider range of clinical applications,
where the implementation of ComBat, a well-known image
preprocessing technique, requires more computing power
associated with a decrease in processing speed due to larger
datasets and correspondingly more sophisticated predictive
models trained on these datasets [26].

A higher number of ROIs with relatively high sphericity
values in the IDH-M subgroup might be explained by less
extensive areas of perifocal vasogenic edema typical for
these tumor types. Such edema spreads along the gyri, giving
the segmentation zones an irregular star-like shape [27, 28].
As our test sample included all morphological types of adult-
type diffuse gliomas of all malignancy grades, relatively
low sphericity values more often indicated more aggressive
tumors, mostly represented by IDH-WT glioblastomas. The
obtained result is indirectly consistent with the study of Y. Li
et al., who showed that spherical disproportion (a radiomic
feature characterized by minimal values for the ideal sphere)
was the only independent prognostic factor positively
correlated with Ki-67 proliferation index expression in lower
grade gliomas [29].

The cumulative predictive performance of the model based on
all six radiomic features is higher than that of the model based
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on a single parameter. Therefore, our classification model
based on the presence/absence of IDH mutation considers
not only the severity of perifocal edema but also probably the
measure of intratumor morphological heterogeneity presented
by significantly higher textural ROI heterogeneity at the voxel
level. We provided more detailed grounds for this assumption
in one of our previous articles [22].

Given that morphological heterogeneity determines the
glioma malignancy grading, our classification model, by
measuring morphological heterogeneity, reflects most
probably a lower or higher malignancy grade of the tumor.
In its turn, numerous morphologic characteristics of high
malignancy mentioned above are associated with the absence
of IDH mutation, allowing the use of radiomics-based markers
for indirect prediction of the IDH mutation status.

Numerous studies indicate that an astrocytic tumor, which
does not fully meet the morphological criteria for higher
malignancy grade but is IDH-M-free and has other specific
molecular genetic characteristics, is defined as a grade 4
IDH-WT glioblastoma and should be treated according
to the corresponding clinical guidelines [33-35]. Since
the study samples covered tumors classified according to
the updated WHO criteria, it is highly probable that some
of the 24 studied IDH-WT gliomas also initially showed
morphological characteristics of malignancy grade 3, which
further was increased due to the IDH-M absence. So, given
the diversity of adult-type diffuse gliomas in the dataset, the
developed model learned to detect IDH-WT entities using the
cases with less pronounced morphological characteristics of
malignancy.

In many recent studies, training samples included clinical
cases classified according to the 2016 WHO classification
with a different IDH mutation status attributed to grade
II, Il diffuse astrocytomas, and grade IV glioblastomas
[36]. Therefore, in some cases, the dataset was limited to
specific morphologic types and malignancy grades so that
the distribution of radiomic features indirectly depended
only on the target variable, i.e., IDH mutation status [37, 38].
Thus, predictive models developed with this approach are
of limited use for primary differential diagnosis, as they are
often trained to classify IDH mutation status within a single
morphological type, which is unknown to the radiologist at
the time of the patient’s initial examination.

Some studies disregarded IDH mutation status in the
differential diagnosis of low-grade and high-grade gliomas,
but in this case the radiomics-based differences between
the IDH-WT and IDH-M tumor subgroups are largely
associated with the minor phenotypic features, the same
as in the morphologic analysis, i.e., radiomics supports the
conventional methods used by radiologists [39, 40].

Paguomuka B gnarHocTuke rmuo6nacTombl

Conclusion

Our results demonstrate a significant impact of different MR
image preprocessing methods on the accuracy of the radio-
mics-based IDH mutation status prediction in patients with
adult-type diffuse glioma.

Based on the analysis of various tool combinations tested in
routine neuroimaging and a small dataset, the combination
with the highest prognostic value for pre-processing, seg-
mentation, and classification of neuro-oncology images was
found to be Scalelntensity, LevelTracing, and Random Forest,
respectively. The possible reason is that the Scalelntensity
technique can better preserve the detail and uniformity of
images, which is particularly useful for comparative analy-
sis. On the other hand, the AdjustContrast technique can im-
prove the quality of visual interpretation, but at the cost of
the structure detail loss due to non-uniformity of adjustment
and the risk of clipping. At the same time, all four preprocess-
ing techniques (Scalelntensity, LevelTracing, Random Forest,
and AdjustContrast) demonstrated similar predictive perfor-
mance; hence, we should use larger datasets to train models
based on these techniques and evaluate the reproducibility of
the yielded results for alternative datasets.

The predictive performance of the presented model based
on all six radiomic features reached the AUC score of
0.845 + 0.089, which we will use in the further studies.

The sphericity value of the ROIs, including perifocal tissue
transformations, is significantly lower in IDH-WT gliomas,
as all of them have malignancy grade 4. This grade posi-
tively correlates with the severity of vasogenic edema, which
is responsible for a typical irregular shape of the structural
changes in tumor-associated areas.

Based on the criteria of the 2021 WHO classification of tu-
mors of the CNS, the optimal models of IDH mutation status
prediction should not be trained on samples presenting only
one morphological type or a malignancy grade but rather on
a sample covering various tumor types and grades to expand
the model’s applicability to the primary diagnostic imaging
in patients with suspected adult-type diffuse glioma. Further-
more, this approach allows non-invasive exclusion of primary
IDH WT glioblastoma at the initial stages of differential di-
agnosis.

We plan to evaluate the reproducibility of the presented
model using an open-source brain MRI dataset with all types
of adult-type diffuse gliomas with identified IDH mutation
status and malignancy grade according to the 2021 WHO
classification of tumors of the CNS. We also intend to develop
a technique for color mapping of ROIs in order to facilitate
visual interpretation of quantitative radiomic data.

AHHa bl KIMHUYECKOV 1 SKcriepumeHTanbHov Hesponormm. 2025. T. 19, Ne 1. DOI: https://doi.org/10.17816/ACEN.1251 39
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