© Кондратьев В.П., Исагулян Э.Д., Томский А.А., 2025

Комбинированное применение электростимуляции спинного мозга и периферического нерва с целью контроля хронического тяжёлого нейропатического болевого синдрома

В.П. Кондратьев, Э.Д. Исагулян, А.А. Томский

Национальный медицинский исследовательский центр нейрохирургии имени академика Н.Н. Бурденко, Москва, Россия

Аннотация

Введение. Хронический тяжёлый нейропатический болевой синдром (НБС), резистентный к консервативным и хирургическим методам лечения, остаётся серьёзной клинической проблемой. Хроническая электростимуляция лишь одной нервной структуры не всегда оказывается достаточно эффективной, что подчёркивает необходимость поиска инновационных подходов, одним из которых может являться комбинированная нейромодуляция.

Целью данной статьи является представление клинического случая комбинированной электростимуляции спинного мозга и периферических нервов.

Описание клинического случая. Пациентка, 32 года, с ятрогенным повреждением икроножного нерва после хирургического вмешательства, страдающая рефрактерным НБС (8 баллов по ВАШ). Неэффективность консервативной терапии (габапентин, дулоксетин) и хирургической коррекции (иссечение невромы) привела к применению хронической электростимуляции спинного мозга, что снизило боль на 30%. Последующая имплантация электрода для периферической стимуляции нерва под УЗ-контролем в сочетании с хронической электростимуляцией позволила достичь полного перекрытия зоны боли и снижения её интенсивности до 1–2 баллов по ВАШ.

Вывод. Сложности, связанные с применением комбинированной нейромодуляции, не должны препятствовать её применению. Удалённость электрода не играет значимой роли в функциональности системы. Комбинированная нейромодуляция продемонстрировала синергизм в лечении болевого синдрома, усиливая анальгетический эффект за счёт воздействия на центральные и периферические механизмы боли. Для рутинного использования в клинической практике требуются масштабные исследования, оценивающие безопасность и эффективность комбинированного подхода.

Ключевые слова: нейропатический болевой синдром; стимуляция спинного мозга; стимуляция периферических нервов

Этическое утверждение. Информированное добровольное согласие на публикацию в письменной форме получено от пациента.

Источник финансирования. Авторы заявляют об отсутствии внешних источников финансирования при проведении исследования.

Конфликт интересов. Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Адрес для корреспонденции: 125047, Россия, Москва, ул. 4-я Тверская-Ямская, д. 16. НМИЦ нейрохирургии им. акад. Н.Н. Бурденко. E-mail: vstenv@gmail.com. Кондратьев В.П.

Для цитирования: Кондратьев В.П., Исагулян Э.Д., Томский А.А. Комбинированное применение электростимуляции спинного мозга и периферического нерва с целью контроля хронического тяжёлого нейропатического болевого синдрома. Анналы клинической и экспериментальной неврологии. 2025;19(3):100–104. DOI: https://doi.org/10.17816/ACEN.1355 EDN: https://elibrary.ru/CEGAFE

Поступила 05.05.2025 / Принята в печать 16.06.2025 / Опубликована 30.09.2025

Combined Spinal Cord and Peripheral Nerve Stimulation in Severe Neuropathic Pain Syndrome

Viktor P. Kondratyev, Emil D. Isagulyan, Alexey A. Tomskiy

N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia

Abstract

Introduction. Chronic severe neuropathic pain syndrome (NPS) refractory to conservative and surgical treatments remains a significant clinical challenge. Chronic electrical stimulation of a single neural structure often proves insufficiently effective, highlighting the need for innovative approaches such as combined neuromodulation. This article aims to present a clinical case of combined spinal cord and peripheral nerve stimulation. A case report. A 32-year-old female with iatrogenic injury to the sural nerve following surgical intervention presented with refractory NPS (8 points on VAS). Failed conservative therapy (gabapentin, duloxetine) and surgical management (neuroma excision) led to chronic spinal cord stimulation, achieving 30% pain reduction. Subsequent ultrasound-guided peripheral nerve electrode implantation combined with chronic electrical stimulation resulted in complete pain area coverage and pain intensity reduction to 1–2 points on VAS.

Conclusion. Technical challenges associated with combined neuromodulation should not preclude its clinical application. Electrode proximity does not significantly affect system performance. Combined neuromodulation demonstrated synergistic effects in pain management by enhancing analgesia through simultaneous modulation of central and peripheral pain mechanisms. Large-scale studies evaluating the safety and efficacy of this combined approach are required for routine clinical implementation.

Keywords: neuropathic pain syndrome; spinal cord stimulation; peripheral nerve stimulation

Ethics approval. Informed voluntary consent to publication in writing has been received from the patient.

Source of funding. The study was not supported by any external sources of funding.

Conflict of interest. The authors declare no apparent or potential conflicts of interest related to the publication of this article.

For correspondence: 16 Tverskaya-Yamskaya str., Moscow, 125047, Russia. N.N. Burdenko National Scientific and Practical Center for Neurosurgery. E-mail: vstenv@gmail.com. Viktor P. Kondratev.

For citation: Kondratyev V.P., Isagulyan E.D., Tomskiy A.A. Combined spinal cord and peripheral nerve stimulation in severe neuropathic pain syndrome. *Annals of Clinical and Experimental Neurology*. 2025;19(3):100–104.

DOI: https://doi.org/10.17816/ACEN.1355

EDN: https://elibrary.ru/CEGAFE

Received 05.05.2025 / Accepted 16.06.2025 / Published 30.09.2025

Введение

Распространённость посттравматической невропатии, развивающейся в результате хирургических вмешательств, варьирует в диапазоне 3–15% [1]. Согласно исследованиям, 6-30% пациентов с данной патологией страдают хроническим нейропатическим болевым синдромом (НБС) [2]. В ряде исследований, посвящённых оценке эффективности консервативной терапии, демонстрируют, что достижение редукции болевого синдрома на 50% и более при монотерапии возможно лишь у 20-30% пациентов, а комбинированное применение фармакологических средств, хотя и показывает лучший анальгетический эффект, не является панацеей [3]. Хирургические методы, включая невролиз и резекцию невром, демонстрируют эффект лишь в 50–70% случаев [4, 5], что подчёркивает необходимость поиска инновационных подходов к лечению. В этой связи всё большую актуальность приобретают методы нейромодуляции, такие как хроническая электростимуляция спинного мозга (SCS) и периферических нервов (PNS). В представленной работе освещается клинический случай комбинированного применения данных методик у пациентки с хроническим фармакорезистентным НБС на фоне невропатии икроножного нерва, а также анализируются современные данные об их эффективности.

Описание клинического случая

Пациентка С., 32 года, перенесла хирургическое удаление подкожной липомы, локализованной на дорсолатеральной поверхности левой стопы, кзади латеральной лодыжки. В раннем послеоперационном периоде манифестировал выраженный болевой синдром жгучего характера с иррадиацией по латеральной поверхности стопы, сопровождавшийся парестезиями и гипестезией пальцев. Интенсивность боли по визуальной аналоговой шкале (ВАШ) достигала 8 баллов. Неврологическое обследование и инструментальная диагностика подтвердили ятрогенное повреждение *n. suralis* в зоне операционного доступа. Последовательные попытки хирургической коррекции (иссечение краевой невромы) и консервативной терапии (габапентин 900 мг/сут, дулоксетин 60 мг/сут, венлафаксин 150 мг/сут) оказались неэффективными: отмечался кратковременный анальгетический эффект с последующим рецидивом боли до следующего приёма препаратов. В 2022 г. Combined electrostimulation for neuropathic pain

пациентке выполнена имплантация системы для хронической SCS на уровне Th10–Th12 (рис. 1). Парестезии от стимуляции охватывали область боли на 80% и снижали выраженность болевого синдрома на 30%.

В 2023 г. пациентка обратилась в НМИЦ нейрохирургии им. акад. Н.Н. Бурденко, где ей была выполнена блокада икроножного нерва. Отметился полный регресс болевого синдрома на время действия местного анестетика с полным рецидивом болевого синдрома на 2–3-й день после блокады. В связи с этим пациентке было решено проведение имплантации электрода для хронической электростимуляции n. suralis под УЗИ-контролем. На заднелатеральной поверхности голени выполнен линейный разрез длиной 3 см, через который под ультразвуковым контролем идентифицирован ствол n. suralis. С использованием эпидуральной иглы Туи, идущей в комплекте с электродом, произведена имплантация электрода параллельно ходу n. suralis с последующей фиксацией в области разреза толстой не рассасывающейся шелковой нитью (5 metric; рис. 2, 3).

Основной сложностью стало проведение дистального конца электрода к верхнеягодичной области, где у пациентки

ранее был установлен подкожный генератор импульсов. С учётом роста пациентки в 170 см расстояние от латеральной лодыжки до генератора составило около 100 см, что потребовало создания системы петель для компенсации движений в суставах. В верхней трети голени и средней трети бедра выполнены дополнительные разрезы по 2 см, через которые по подкожному туннелю проведены удлинители длиной 55 и 35 см, а также сформированы две компенсаторные петли (рис. 4). Это позволило достичь общей длины системы 140 см, исключив риск натяжения электрода при сгибательно-разгибательных движениях конечности. Далее проведена проверка импеданса, который не вышел за пределы нормальных значений. Закончилась операция послойным ушиванием раны.


На следующий день проведена настройка программы нейростимуляции, область боли была перекрыта полностью. Комбинированная нейростимуляция (SCS + PNS) позволила снизить интенсивность НБС до 1–2 баллов по ВАШ (рис. 5). Через 24 мес наблюдения отмечено истощение ресурса имплантированного генератора импульсов, потребовавшее его замены. Медикаментозная терапия сохраняется в прежнем объёме.

Рис. 1. Рентгенологическая картина имплантированного электрода в заднее эпидуральное пространство на уровне Th10-Th12 позвонков.

Рис. 2. Фото из операционной. Имплантация электрода на *n. suralis* под УЗИ-контролем.

Рис. 3. УЗ-картина имплантированного электрода. Слева — поперечное сканирование. Электрод идёт вдоль ствола *n. suralis* на расстоянии от него менее 1 мм. Справа — продольное сканирование: вывести электрод и *n. suralis* в одну плоскость крайне затруднительно из-за их взаимного расположения, но можно визуализировать тень от электрода и эпиневрий *n. suralis*.

Рис. 4. Фото послеоперационных ран на 3-и сутки после операции. Отмечается несколько гематом в ложе кармана петель, но клинически значимого эффекта они не имели и самостоятельно прошли через несколько недель.

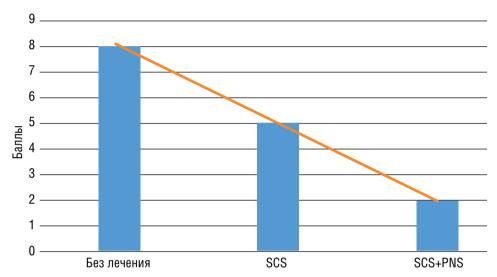


Рис. 5. Динамика выраженности болевого синдрома в баллах по ВАШ в зависимости от метода лечения.

Обсуждение

Представленный клинический случай иллюстрирует потенциал комбинированной нейромодуляции в лечении сложного болевого синдрома. Согласно результатам рандомизированных контролируемых исследований монотерапия PNS обеспечивает снижение боли ≥ 50% у 38% пациентов с посттравматической невропатией [6], тогда как систематический обзор указывает на вариабельность эффективности метода (38–78%) в зависимости от этиологии и локализации повреждения [7]. SCS достигает анальгетического эффекта у 50–70% пациентов [6, 8]. В литературе описано несколько клинических случаев комбинированного применения PNS и SCS с более выраженным анальгетическим эффектом, нежели применение только одного этого метода [9–12].

Механизм синергизма, вероятно, связан с одновременной модуляцией как спинальных, так и периферических звеньев ноцицептивной передачи. SCS воздействует на дорсальные рога спинного мозга, подавляя центральную сенситизацию, тогда как PNS блокирует периферическую гипервозбудимость повреждённого нерва [9]. Однако отсутствие рандомизированных контролируемых исследований, посвящённых комбинированной стимуля-

ции, ограничивает доказательную базу, а повышенный риск осложнений (миграция электродов, интраоперационное повреждение структур, инфекции) требует тщательного отбора пациентов, выполнения операций и наблюдения в послеоперационном периоде.

Также особенностью этого клинического случая является удалённость электрода от генератора. Зачастую при имплантации электрода на нервы голени генератор имплантируется в область латеральной поверхности бедра. Однако здесь уже был имплантированный генератор, и единственной опцией было использование нескольких удлинителей для преодоления этого расстояния и минимизации риска натяжения электрода и удлинителей, чего нам и удалось добиться. При этом значимого повышения импеданса в цепи не было, он был в районе 800 Ом, что позволило использовать низкую амплитуду и экономить заряд батареи генератора.

Заключение

Терапия хронического НБС, резистентного к консервативным методам, требует мультимодального подхода, интегрирующего фармакотерапию, интервенционные и нейромодуляционные методики. Комбинированная

Combined electrostimulation for neuropathic pain

электростимуляция (SCS + PNS) представляет собой перспективное направление, позволяющее усилить анальгетический эффект за счёт воздействия на различные патогенетические звенья болевого синдрома. Удалённость планируемой цели для стимуляции не должна являться противопоказанием к применению комбинации методов. Тем не менее внедрение данной стратегии в клиническую практику должно сопровождаться проведением масштабных рандомизированных контролируемых исследований для оценки долгосрочной эффективности и безопасности, а также разработкой алгоритмов индивидуализированного подхода к выбору метода нейромодуляции.

Список источников | References

- Kretschmer T, Heinen CW, Antoniadis G, et al. Iatrogenic nerve injuries. Neurosurg Clin N Am. 2009;20(1):73–90. doi: 10.1016/j.nec.2008.07.025
- Яхно Н.Н., Кукушкин М.Л., Данилов А.Б. и др. Результаты Российского эпидемиологического исследования распространенности невропатической боли, ее причин и характеристик в популяции амбулаторных больных, обратившихся к врачу-неврологу. Российский журнал боли. 2008;(3):24–32.
- Yakhno NN, Kukushkin MV, Danylov AB, et al. Results of Russian epidemiological study of neuropathic pain (nep) prevalence among patients applying for neurological care (epic). Russian Journal of Pain. 2008;(3):24–32. doi: 10.1016/S1090-3801(09)60555-3
- Давыдов О.С., Яхно Н.Н., Кукушкин М.Л. и др. Невропатическая боль: клинические рекомендации по диагностике и лечению Российского общества изучения боли. Российский журнал боли. 2018;(4):5–41.
- Davydov OS, Yakhno NN, Kukushkin MV, et al. Neuropathic pain: clinical guidelines on the diagnostics and treatment from the Russian Association for the Studying of Pain. Russian Journal of Pain.2018;(4):5–41. doi: 10.25731/RASP.2018.04.025
- Blanton N, Bui P, Rizzo D. Neurologists, neuroctomy, and grafting for chronic lower extremity pain following major rearfoot reconstruction. The Foot and Ankle Online Journal. 2019;12(4):2. doi: 10.3827/faoj.2019.1204.0002
- Gosk J, Rutowski R, Rabczyński J. The lower extremity nerve injuries own experience in surgical treatment. Folia Neuropathol. 2005;43(3):148–152.

- Deer TR, Mekhail N, Provenzano D, et al. The appropriate use of neurostimulation: avoidance and treatment of complications of neurostimulation therapies for the treatment of chronic pain. Neuromodulation Appropriateness Consensus Committee. *Neuromodulation*. 2014;17(6):571–598. doi: 10.1111/ner.12206
- Xu J, Sun Z, Wu J, et al. Peripheral nerve stimulation in pain management: a systematic review. *Pain Physician*. 2021;24(2):E131–E152.
- Kumar K, Taylor RS, Jacques L, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. *Pain.* 2007;132(1–2):179–188. doi: 10.1016/j.pain.2007.07.028
- Baxter AL, Thrasher A, Etnoyer-Slaski JL, et al. Multimodal mechanical stimulation reduces acute and chronic low back pain: pilot data from a HEAL phase 1 study. Front Pain Res (Lausanne). 2023;4:1114633. doi: 10.3389/fpain.2023.1114633
- Lipov E.G. Hybrid neurostimulator: simultaneous use of spinal cord and peripheral nerve field stimulation to treat low back and leg pain. *Prog Neurol Surg.* 2011;24:147–155. doi: 10.1159/000323047
- Bernstein ČA, Paicius RM, Barkow SH, et al. Spinal cord stimulation in conjunction with peripheral nerve field stimulation for the treatment of low back and leg pain: a case series. *Neuromodulation*. 2008;11(2):116– 123. doi: 10.1111/j.1525-1403.2008.00152.x
- 123. doi: 10.1111/j.1525-1403.2008.00152.x
 14. Choi JH, Choi SC, Kim DK, et al. Combined spinal cord stimulation and peripheral nerve stimulation for brachial plexopathy: a case report. *Pain Physician*. 2016;19(3):E459–E463.

Информация об авторах

Кондратьев Виктор Павлович — аспирант 6-го нейрохирургического отделения (краниофациальная нейрохирургия) с группой «Функциональная нейрохирургия» НМИЦ нейрохирургии им. акад. Н.Н. Бурденко, Москва, Россия, https://orcid.org/0000-0003-3272-8699

Исагулян Эмиль Давидович — канд. мед. наук, с. н. с., врач-нейрохирург 6-го нейрохирургического отделения (краниофациальная нейрохирургия) с группой «Функциональная нейрохирургия» НМИЦ нейрохирургии им. акад. Н.Н. Бурденко, Москва, Россия,

https://orcid.org/0000-0003-1191-9357

Томский Алексей Алексевич — канд. мед. наук, с. н. с., руководитель 6-го нейрохирургического отделения (краниофациальная нейрохирургия) с группой «Функциональная нейрохирургия» НМИЦ нейрохирургии им. акад. Н.Н. Бурденко, Москва, Россия, https://orcid.org/0000-0002-2120-0146

Вклад авторов: Кондратьев В.П. — концепция и дизайн исследования, сбор и обработка материала, написание текста; *Исагулян Э.Д.* — концепция и дизайн исследования, редактирование; *Томский А.А.* — редактирование.

Information about the authors

Viktor P. Kondratyev — postgraduate student, 6th Neurosurgical department (craniofacial neurosurgery) with the group "Functional neurosurgery", N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia, https://orcid.org/0000-0003-3272-8699

Emil D. Isagulyan — Cand. Sci. (Med.), senior researcher, 6th Neurosurgical department (craniofacial neurosurgery) with the group "Functional neurosurgery", N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia, https://orcid.org/0000-0003-1191-9357

Alexey A. Tomskiy — Cand. Sci. (Med.), senior researcher, Head, 6th Neurosurgical department (craniofacial neurosurgery) with the group "Functional neurosurgery", N.N. Burdenko National Medical Research Center of Neuro-surgery, Moscow, Russia, https://orcid.org/0000-0002-2120-0146

Authors' contribution: Kondratyev V.P. – study concept and design, data collection, text writing; *Isagulyan E.D.* – study concept and design, editing; *Tomskiy A.A.* – editing.