Neurodegeneration with brain iron accumulation

Cover Page

Cite item

Full Text


Neurodegeneration with brain iron accumulation (NBIA) is a clinically and genetically heterogeneous group of hereditary (predominantly autosomal recessive) progressive disorders of the CNS with a common feature of iron accumulation in basal ganglia and characteristic MRI image. By now, nine genes responsible for different NBIA are known, and some of these genes cause the development of several allelic phenotypes. In the review, current data on NBIA clinical and molecular genetic aspects, particularly on recently discovered forms and atypical clinical variants, are summarized.

About the authors

Galina E. Rudenskaya

Research Centre for Medical Genetics

Author for correspondence.
Russian Federation, Moscow

E. Yu. Zakharova

Research Centre for Medical Genetics

Russian Federation, Moscow


  1. Захарова Е.Ю., Руденская Г.Е. Новая форма наследственной дегенерации с накоплением железа в мозге: клинические и молекулярно-генетические характеристики. Журн. неврол. психиатр. им. С.С.Корсакова (в печати).
  2. Руденская Г.Е., Захарова Е.Ю., Поляков А.В. Наследственные болезни нервной системы с двигательными расстройствами: «новые» формы, редкие фенотипы, молекулярная диагностика. В кн.: Болезнь Паркинсона и расстройства движений. Рук-во для врачей по материалам II Национального конгресса (под ред. С.Н. Иллариошкина, О.С. Левина). М., 2011: 286–294.
  3. Aggarwal A., Schneider S., Houlden H. et al. Indian-subcontinent NBIA: unusual phenotypes, novel PANK2 mutations, and undetermined genetic forms. Mov. Disord. 2010; 25: 1424–1431.
  4. Alazami A., Al-Saif A., Al-Semari A. et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am. J. Hum. Genet. 2008; 83: 684–691.
  5. Alazami A., Schneider S., Bonneau D. et al. C2orf37 mutational spectrum in Woodhouse-Sakati syndrome patients. Clin. Genet. 2010; 78: 585–590.
  6. Antonini A., Goldwurm S., Benti R. et al.Genetic, clinical, and imaging characterization of one patient with late-onset, slowly progressive, pantothenate kinase-associated neurodegeneration. Mov. Disord. 2006; 21: 417–418.
  7. Ben-Omran T., Ali R., Almureikhi M. et al. Phenotypic heterogeneity in Woodhouse-Sakati syndrome: two new families with a mutation in the C2orf37 gene. Am. J. Med. Genet. 2011; 155A: 2647–2653.
  8. Bras J., Verloes A., Schneider S. et al. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid lipofuscinosis. Hum. Molec. Genet. 2012; 12: 2646–2650.
  9. Chang M., Hung W., Liao Y. et al. Eye of the tiger-like MRI in
  10. parkinsonian variant of multiple system atrophy. J. Neural Transmis. 2009; 116: 861–866.
  11. Chiapparini L., Savoiardo M., D’Arrigo S. et al. The “eye-of-the-tiger” sign may be absent in the early stages of classic pantothenate kinase associated neurodegeneration. Neuropediatrics 2011; 42: 159–162.
  12. Chien H., Bonifani V., Barbosa E. ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov. Disord. 2011; 26: 1364–1365.
  13. Ching K., Westaway S., Gitschier J. et al. HARP syndrome is allelic with pantothenate kinase-associated neurodegeneration. Neurology 2002; 58: 1673–1674.
  14. Chinnery P. Neuroferritinopathy. GeneReviews.
  15. Chinnery P., CromptonD., Birchall D. et al. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460insA mutation. Brain 2007; 130: 110–119.
  16. Chung S., Lee J., Lee M. et al. Focal hand dystonia in a patient with PANK2 mutations. Mov. Disord. 2008; 23: 466–468.
  17. Curtis A., Fey C., Morris C. et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat. Genet. 2001; 28:350–354.
  18. del Valle-López P., Pérez-García R., Sanguino-Andrés R., González-Pablos E. Adult onset Hallervorden-Spatz disease with psychotic symptoms. Actas Esp. Psiquiat. 2011; 39: 260–262.
  19. Deschauer M., Gaul C., Behrmann C. et al. C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. J. Neurol. 2012; 259: 2434–2439.
  20. Dezfouli M., Alavi A., Rohani M. et al. PANK2 and C19orf12 mutations are common causes of neurodegeneration with brain iron accumulation. Mov. Disord. 2013; 28: 228–232.
  21. Diaz N. Late Onset Atypical Pantothenate-Kinase-Associated Neurodegeneration. Case Rep. Neurol. Med. 2013; 2013: 860201.
  22. Dick K., Al-Mjeni R., Baskir W. et al. A novel locus for an autosomal recessive hereditary spastic paraplegia (SPG35) maps to 16q21-q23. Neurology 2008; 71: 248–252.
  23. Di Fonzo A., Chien H., Socal M. et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 2007; 68: 1557–1562.
  24. Dogu O., Krebs C., Kaleagasi H. et al. Rapid disease progression in adult-onset mitochondrial membrane protein-associated neurodegeneration. Clin. Genet. 2012; Dec 20. doi: 10.1111/cge.12079 [Epub ahead of print].
  25. Dusek P., Schneider S. Neurodegeneration with brain iron accumulation. Curr. Opin. Neurol. 2012; 25: 499–506.
  26. Edvardson S., Hama H., Shaag A. et al. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am. J. Hum. Genet. 2008; 83: 643–648.
  27. Eiberg H., Hansen L., Korbo L. et al. Novel mutation in ATP13A2 widens the spectrum of Kufor-Rakeb syndrome (PARK9). Clin. Genet. 2012; 82: 256–263.
  28. Fekete R. Late Onset Neurodegeneration with Brain-Iron Accumulation Presenting as Parkinsonism. Case Rep. Neurol. Med.2012; 387095.
  29. Fong C., Rolfs A., Schwarzbraun T. et al. Juvenile parkinsonism associated with heterozygous frameshift ATP13A2 gene mutation. Eur. J. Paediat. Neurol. 2011; 15: 271–275.
  30. Garone C., Pippucci T., Cordelli D. et al. FA2H-related disorders: a novel c.270+3A>T splice-site mutation leads to a complex neurodegenerative phenotype. Dev. Med. Child Neurol. 2011; 53: 958–961.
  31. Gregory A., Hayflick S. Neurodegeneration with Brain Iron Accumulation Disorders Overview. GeneReviews
  32. Gregory A., Westaway S., Holm I. et al. Neurodegeneration associated with genetic defects in phospholipase (2). Neurology 2008; 71: 1402–1409.
  33. Gui Y.X., Xu Z.P., Wen-Lu et al. Four novel rare mutations of PLA2G6 in Chinese population with Parkinson’s disease. Parkinsonism Relat. Disord. 2013; 19: 21–26.
  34. Haack T., Hogarth P., Kruer M. et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 2012; 91:1144–1149.
  35. Hartig M., Hörtnagel K., Garavaglia B. et al. Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann. Neurol. 2006; 59: 248–256.
  36. Hartig M., Iuso A., Haack T. et al. Absence of an Orphan Mitochondrial protein, C19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 2011; 89: 543–550.
  37. Hayflick S., Kruer M., Gregory A. et al. Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain 2013; 136: 1708-1717.
  38. Hider R., Roy S., Ma Y. et al. The potential application of iron chelators for the treatment of neurodegenerative diseases. Metallomic 2011; 3: 239–249.
  39. Hogarth P., Gregory A., Kruer M. et al. New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 2013; 80: 268–275.
  40. Horvath R., Holnski-Feder E., Neeve V. et al. A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Mov. Disord. 2012; 27: 789–793.
  41. Houlden H., Lincoln S., Farrer M. et al. Compound heterozygous PANK2 mutations confirm HARP and Hallervorden-Spatz syndromes are allelic. Neurology 2003; 61: 1423–1426.
  42. Human Gene Mutation Database (HGMD)
  43. Keogh M., Chinnery P. Current concepts and controversies in neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 51–56.
  44. Keogh M., Jonas P., Coulthard A. et al. Neuroferritinopathy: a new inborn error of iron metabolism. Neurogenetics 2012; 13: 93–96.
  45. Kojovic M., Pareés I., Lampreia T. et al. The syndrome of deafnessdystonia:Clinical and genetic heterogeneity. Mov. Disord. 2013; 28:795–803.
  46. Kruer M., Gregory A., Haflick S. Fatty Acid Hydroxylase-Associated Neurodegeneration. GeneReviews
  47. Kruer M., Paisán-Ruiz C., Boddaert N. et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann. Neurol. 2010; 68: 611–618.
  48. Kubota A., Hida A., Ichikawa Y. et al. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy. Description of clinical features and implications for genotypephenptype correlations. Mov. Disord. 2008; 24: 441–445.
  49. Kumar N., Boes C., Babovic-Vuksanovic D., Boeve B. The “Eye-ofthe-Tiger” sign is not pathognomonic of the PANK2 mutation. Arch. Neurol. 2006; 63: 292–293.
  50. Kurian M., Morgan N., McPherson L. et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 2008; 70: 623–629.
  51. Lai H., Lin C., Wu R. Early-onset autosomal-recessive parkinsonian-pyramidal syndrome. Acta Neurol. Taiwan 2012; 21: 99–107.
  52. Leoni V., Strittmatter L., Zorzi G. et al. Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol. Genet. Metab. 2012; 105: 463–471.
  53. Lin C., Tan E., Chen M. et al. Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 2008; 71:1727–1732.
  54. Lu C., Lai S., Wu R. et al. PLA2G6 mutations in PARK14-linked young-onset parkinsonism and sporadic Parkinson’s disease. Am. J. Med. Genet. 2012; 159B: 183–191.
  55. Mak C., Sheng B., Lee H. et al. Young-onset parkinsonism in a Hong Kong Chinese man with adult-onset Hallervorden-Spatz syndrome. Int. J. Neurosci. 2011; 121: 224–227.
  56. McNeill A., Pandolfo M., Kuhn J. et al. The neurological presentation of ceruloplasmin gene mutations. Eur. Neurol. 2008; 60: 200–205.
  57. Morgan N., Westaway S., Morton J. et al. PLA2G6, encoding a phospholipase, A2 is mutated in neurodegenerative disorders with high brain iron. Nat. Genet. 2006; 38: 752–754.
  58. Nicholas A., Earnst K., Marson D. Atypical Hallervorden-Spatz disease with preserved cognition and obtrusive obsessions and compulsions. Mov. Disord. 2005; 20: 880–886.
  59. Ogimoto M., Anzai A., Takenoshita H. et al. Criteria for early identification of aceruloplasminemia. Intern. Med. 2011; 50: 1415–1418.
  60. Ohta E. Clinical feature of neuroferritinopathy. Rinsho Shinkeigaku 2012; 52: 951–954.
  61. Ondo W., Adam O., Jankovic J., Chinnery P. Dramatic response of facial stereotype/tic to tetrabenazine in the first reported cases of neuroferritinopathy in the United States. Mov. Disord. 2010; 25: 2470–2472.
  62. Oner O., Oner P., Deda G. et al. Psychotic disorder in a case with Hallervorder-Spatz disease. Acta Psychiat. Scand. 2003; 108: 394–397.
  63. On-line Mendelian Inheritance in Man (OMIM)
  64. Paisán-Ruiz C., Bhatia K., Li A. et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 2009; 65:19–23.
  65. Panteghini C., Zorzi G., Venco P. et al. C19orf12 and FA2H mutations are rare in Italian patients with neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 75–81.
  66. Patil P., Manakshe G., Mahajan D. et al. Neurodegeneration with brain iron accumulation – late-onset slowly progressive variant. J. Assoc. Physicians India 2011; 59: 319–321.
  67. Pellecchia M., Valente E., Cif L. et al. The diverse phenotype and genotype of pantothenate kinase-associated neurodegeneration. Neurology 2005; 64: 1810–1812.
  68. Pierson T., Simeonov D., Sinkan M. et al. Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur. J. Hum. Genet. 2012;20: 476–479.
  69. Pratini N., Sweeters N., Vichinsky E., Neufeld J. Treatment of classic pantothenate kinase-associated neurodegeneration with deferiprone and intrathecal baclofen. Am. J. Phys. Med. Rehabil. 2013; Jan 30 [Epub ahead of print].
  70. Ramirez A., Heimbach A., Grundemann J. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 2006; 38: 1184–1191.
  71. Saitsu H., Nishimura T., Muramatsu K. et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 2013; 45: 445–449.
  72. Santoro L., Breedveld G., Manganelli F. et al. Novel ATP13A2 (PARK9) homozygous mutations in a family with marked intrafamilial variability. Neurogenetics 2011; 12: 33–39.
  73. Schneider S., Bhatia K. Dystonia in the Woodhouse–Sakati syndrome: A new family and literature review. Mov. Disord. 2008; 23: 592–596.
  74. Schneider S., Bhatia K. Syndromes of neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 57–66.
  75. Schneider S., Paisan-Ruiz C., Quinn N. et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov. Disord. 2010; 25: 979–984.
  76. Schottmann G., Stenzel W., Lützkendorf S. et al. A novel frameshift mutation of C19ORF12 causes NBIA4 with cerebellar atrophy and manifests with severe peripheral motor axonal neuropathy. Clin. Genet. 2013; Mar 25 [Epub ahead of print].
  77. Schulte E., Claussen M., Jochim A. et al. Mitochondrial membrane protein associated neurodegeneration: A novel variant of neurodegeneration with brain iron accumulation. Mov. Disord. 2013; 28: 224-227.
  78. Seo J., Song S., Lee P. A Novel PANK2 Mutation in a patient with atypical pantothenate-kinase-associated neurodegeneration presenting with adult-onset parkinsonism. J. Clin. Neurol. 2009; 5: 192–194.
  79. Shah S., Mehta H., Fekete R. Late-onset neurodegeneration with brain iron accumulation with diffusion tensor magnetic resonance imaging. Case Rep. Neurol. 2012; 4: 216–223.
  80. Shi C., Tang B., Wang L. et al. PLA2G6 gene mutation in autosomal recessive early-onset parkinsonism. Neurology 2011; 77: 75–81.
  81. Sina F., Shojaee S., Elahi E., Paisán-Ruiz C. R632W mutation in PLA2G6 segregates with dystonia-parkinsonism in a consanguineous Iranian family. Eur. J. Neurol. 2009; 16: 101–114.
  82. Steindl K., Alazami A., Bhatia K. et al. A novel C2orf37 mutation causes the first Italian cases of Woodhouse Sakati syndrome. Clin. Genet. 2010; 78: 594–597.
  83. Strecker K., Hesse S., Wegner F. et al. Eye of the tiger sign in multiple system atrophy. Eur. J. Neurol. 2007; 14: e1–e2.
  84. Thomas M., Hayflick S., Jankovic J. Clinical heterogeneity of neurodegeneration with brain iron accumulation (Hallervorden-Spatz syndrome) and pantothenate kinase-associated neurodegeneration. Mov. Disord. 2004; 19: 36–42.
  85. Timmermann L., Pauls K., Wieland K. et al. Degeneration with brain iron accumulation. Brain 2010; 133: 701–712.
  86. Vasconcelos O., Harter D., Duffy C. et al. Adult Hallervorden-Spatz simulating amyotrophic lateral sclerosis. Muscle Nerve 2003; 28:118–122.
  87. Yoon W., Lee W., Shin H. et al. Novel PANK2 mutations in Korean patient with panthonenate kinase-associated neurodegeneration presenting unilateral dystonic tremor. Mov. Disord. 2010; 25: 245–247.
  88. Yoshino H., Tomiyama N., Tachibana N. et al. Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 2010; 75: 1356–1361.
  89. Young-Kyung Sunwoo, Jeong-Seop Lee, Won-Hyoung Kim et al. Psychiatric disorder in two siblings with Hallervorden-Spatz disease. Psychiatry Investig. 2009; 6: 226–229.
  90. Zeidman L., Pandey D. Declining use of the Hallervorden-Spatz disease eponym in the last two decades. J. Child Neurol. 2012; 27: 1310-1315.
  91. Zorzi G., Zibordi F., Chapparini L., Nardocci N. Therapeutic advances in neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 2012; 19: 82–86.

Supplementary files

Supplementary Files

Copyright (c) 2013 Rudenskaya G.E., Zakharova E.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies