Resting-state fMRI: new possibilities for studying physiology and pathology of the brain

Cover Page

Abstract

A new method, resting-state fMRI, has been proposed recentl for studying basic sensory, emotional, and cognitive processes in healthy and neurologically affected subjects. It allows assessing spontaneous co-activation of different CNS regions in rest on the basis of temporal characteristics of neuronal activity of anatomically separated brain regions. On resting-state fMRI studies, the existence of stable and functionally linked restingstate brain networks was shown, that is important in the context of basic mechanisms of neurological disorders. We performed a first resting-state fMRI study in Russia in the group of 10 healthy subjects and revealed a clear default mode network pattern which was consistent with data in published papers. Examining of integrative system of functionally interacting brain regions with the use of resting-state fMRI can provide new insights into large-scale neuronal communication within the human brain.

About the authors

E. V. Seliverstova

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

Yu. A. Seliverstov

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Email: platonova@neurology.ru
Russian Federation

R. N. Konovalov

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Email: platonova@neurology.ru
Russian Federation

S. N. Illarioshkin

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Email: platonova@neurology.ru
Russian Federation

References

  1. Селиверстов Ю.А., Селиверстова Е.В., Коновалов Р.Н., Иллариошкин С.Н. Первый опыт применения функциональной МРТ покоя в России. В сб.: Невский радиологический форум 2013: СПб, 2013: 217.
  2. Aertsen A.M., Gerstein G.L., Habib M.K., Palm G. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 1989; 61 (5), 900–917.
  3. Andrews-Hanna J.R., Snyder A.Z., Vincent J.L. et al. Disruption of large-scale brain systems in advanced aging. Neuron 2007; 56 (5), 924–935.
  4. Beckmann C.F., DeLuca M., Devlin J.T., Smith S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2005; 360 (1457), 1001–1013.
  5. Birn R.M., Diamond J.B., Smith M.A., Bandettini P.A. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006; 31 (4), 1536–1548.
  6. Birn R.M., Smith M.A., Jones T.B., Bandettini P.A. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage. 2008; 40 (2), 644–654.
  7. Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995; 34 (4), 537–541.
  8. Biswal B.B., Van Kylen J., Hyde J.S. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 1997; 10 (4–5), 165–170.
  9. Buckner R.L., Vincent J.L. Unrest at rest: default activity and spontaneous net-work correlations. Neuroimage. 2007; 37 (4), 1091–1096.
  10. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10 (3), 186–198.
  11. Calhoun V.D., Adali T., Pearlson G.D., Pekar J.J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 2001; 14 (3), 140–151.
  12. Chang C., Cunningham J.P., Glover G.H. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage. 2009; 44 (3), 857–869.
  13. Cordes D., Haughton V., Carew J.D. et al. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn. Reson. Imaging. 2002; 20 (4), 305–317.
  14. Cordes D., Haughton V.M., Arfanakis K. et al. Frequencies contributing to functional connectivity in the cerebral cortex in “restingstate” data. AJNR Am. J. Neuroradiol. 2001; 22 (7), 1326–1333.
  15. Cordes D., Haughton V.M., Arfanakis K. et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 2000; 21 (9), 1636–1644.
  16. Damoiseaux J.S., Rombouts S.A., Barkhof F. et al. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U. S. A. 2006; 103 (37), 13,848–13,853.
  17. De Luca M., Beckmann C.F., De Stefano N. et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 2006; 29 (4), 1359–1367.
  18. Filippi M. fMRI techniques and protocols. Humana press, 2009: 25.
  19. Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007; 8 (9), 700–711.
  20. Fox M.D., Snyder A.Z., Vincent J.L. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 2005; 102 (27), 9673–9678.
  21. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI in-vestigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005; 26 (1), 15–29.
  22. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI in-vestigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005; 26 (1), 15–29.
  23. Friston K.J., Frith C.D., Liddle P.F., Frackowiak R.S. Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 1993; 13 (1), 5–14.
  24. Greicius M.D., Flores B.H., Menon V. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry. 2007; 62, 429–437.
  25. Greicius M.D., Krasnow B., Reis A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U. S. A. 2003; 100 (1), 253–258.
  26. Greicius M.D., Srivastava G., Reiss A.L., Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U. S. A. 2004; 101 (13), 4637–4642.
  27. Greicius M.D., Supekar K., Menon V., Dougherty R.F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex. 2008; 19 (1), 72–78 (Epub 2008 Apr 9).
  28. Gusnard D.A., Raichle M.E., Raichle M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2001; 2 (10), 685–694.
  29. Larson-Prior L.J., Zempel J.M., Nolan T.S. et al. Cortical network functional connectivity in the descent to sleep. Proc. Natl. Acad. Sci. U. S. A. 2009; 106 (11), 4489–4494.
  30. Liu Y., Liang M., Zhou Y. et al. Disrupted small-world networks in schizophrenia. Brain. 2008; 131 (4), 945.
  31. Lowe M.J., Dzemidzic M., Lurito J.T. et al. Correlations in low-frequency BOLD fluctuations reflect cortico–cortical connections. Neuroimage 2000; 12 (5), 582–587.
  32. Mason M.F., Norton M.I., Van Horn J.D. Wandering minds: the default network and stimulus-independent thought. Science. 2007; 315 (5810), 393–395.
  33. Nir Y., Mukamel R., Dinstein I. et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat. Neurosci. 2008; 11 (9), 8.
  34. Raichle M.E., MacLeod A.M., Snyder A.Z. et al. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 2001; 98 (2), 676–682.
  35. Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007; 37 (4), 1083–1090.
  36. Rombouts S.A., Barkhof F., Goekoop R. et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum. Brain Mapp. 2005; 26 (4), 231–239.
  37. Rombouts S.A., Damoiseaux J.S., Goekoop R. et al. Model-free group analysis shows altered BOLD FMRI networks in dementia. Hum. Brain Mapp. 2009; 30 (1), 256–266.
  38. Salvador R., Suckling J., Coleman M.R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex. 2005a; 15 (9), 1332–1342.
  39. Shmuel A., Leopold D.A. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum. Brain Mapp. 2008; 29 (7), 751–761.
  40. Shmuel A., Yacoub E., Pfeuffer J. et al. Sustained negative BOLD, blood flow and oxygen consumption re-sponse and its coupling to the positive response in the human brain. Neuron. 2002; 36 (6), 1195–1210.
  41. Shmueli K., van Gelderen P., de Zwart J.A. et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 2007; 38 (2), 306–320.
  42. Song M., Zhou Y., Li J. et al. Brain spontaneous functional connectivity and intelligence. Neuroimage 2008; 41 (3), 1168–1176.
  43. Thirion B., Dodel S., Poline J.B. Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage. 2006; 29 (1), 321–327.
  44. van Buuren M., Gladwin T.E., Zandbelt B.B. et al. Cardiorespiratory effects on default-mode network activity as measured with fMRI. Hum. Brain Mapp. 2009; 30 (9), 3031–3042.
  45. van de Ven V.G., Formisano E., Prvulovic D. et al. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum. Brain Mapp. 2004; 22 (3), 165–178.
  46. Van den Heuvel M.P., Hulshoff Pol H.E. Specific somatotopic organization of functional connections of the primary motor network during resting-state. Hum. Brain Mapp. 2010a; 31 (4), 631–644.
  47. Van den Heuvel M.P., Hulshoff Pol H.E. Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharm. 2010b; 20, 519-534.
  48. Van den Heuvel M.P., Mandl R.C., Hulshoff Pol H.E. Normalized group clustering of resting-state fMRI data. PLoS ONE. 2008a; 3 (4), e2001.
  49. Van den Heuvel M.P., Mandl R.C., Luigjes J., Hulshoff Pol H.E. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 2008b; 43 (28), 7.
  50. Van den Heuvel M.P., Stam C.J., Boersma M., Hulshoff Pol H.E. Small-world and scale-free organization of voxel based resting-state functional connectivity in the human brain. Neuro-image. 2008c; 43 (3), 11.
  51. Weissenbacher A., Kasess C., Gerstl F. et al. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage. 2009; 47 (4), 1408–1416.
  52. Whitfield-Gabrieli S., Thermenos H.W., Milanovic S. et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 2009; 106 (4), 1279–1284.
  53. Wise R.G., Ide K., Poulin M.J., Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage. 2004; 21 (4), 1652–1664.
  54. Xiong J., Ma L., Wang B. et al. Long-term motor training induced changes in regional cerebral blood flow in both task and resting states. Neuroimage. 2008; 45 (1), 75–82.

Statistics

Views

Abstract: 729

PDF (Russian): 583

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2017 Seliverstova E.V., Seliverstov Y.A., Konovalov R.N., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies