Resting-state fMRI: new possibilities for studying physiology and pathology of the brain

Cover Page


A new method, resting-state fMRI, has been proposed recentl for studying basic sensory, emotional, and cognitive processes in healthy and neurologically affected subjects. It allows assessing spontaneous co-activation of different CNS regions in rest on the basis of temporal characteristics of neuronal activity of anatomically separated brain regions. On resting-state fMRI studies, the existence of stable and functionally linked restingstate brain networks was shown, that is important in the context of basic mechanisms of neurological disorders. We performed a first resting-state fMRI study in Russia in the group of 10 healthy subjects and revealed a clear default mode network pattern which was consistent with data in published papers. Examining of integrative system of functionally interacting brain regions with the use of resting-state fMRI can provide new insights into large-scale neuronal communication within the human brain.

About the authors

E. V. Seliverstova

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Author for correspondence.
Russian Federation

Yu. A. Seliverstov

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Russian Federation

R. N. Konovalov

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Russian Federation

S. N. Illarioshkin

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Russian Federation


  1. Селиверстов Ю.А., Селиверстова Е.В., Коновалов Р.Н., Иллариошкин С.Н. Первый опыт применения функциональной МРТ покоя в России. В сб.: Невский радиологический форум 2013: СПб, 2013: 217.
  2. Aertsen A.M., Gerstein G.L., Habib M.K., Palm G. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 1989; 61 (5), 900–917.
  3. Andrews-Hanna J.R., Snyder A.Z., Vincent J.L. et al. Disruption of large-scale brain systems in advanced aging. Neuron 2007; 56 (5), 924–935.
  4. Beckmann C.F., DeLuca M., Devlin J.T., Smith S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2005; 360 (1457), 1001–1013.
  5. Birn R.M., Diamond J.B., Smith M.A., Bandettini P.A. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006; 31 (4), 1536–1548.
  6. Birn R.M., Smith M.A., Jones T.B., Bandettini P.A. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage. 2008; 40 (2), 644–654.
  7. Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995; 34 (4), 537–541.
  8. Biswal B.B., Van Kylen J., Hyde J.S. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 1997; 10 (4–5), 165–170.
  9. Buckner R.L., Vincent J.L. Unrest at rest: default activity and spontaneous net-work correlations. Neuroimage. 2007; 37 (4), 1091–1096.
  10. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10 (3), 186–198.
  11. Calhoun V.D., Adali T., Pearlson G.D., Pekar J.J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 2001; 14 (3), 140–151.
  12. Chang C., Cunningham J.P., Glover G.H. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage. 2009; 44 (3), 857–869.
  13. Cordes D., Haughton V., Carew J.D. et al. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn. Reson. Imaging. 2002; 20 (4), 305–317.
  14. Cordes D., Haughton V.M., Arfanakis K. et al. Frequencies contributing to functional connectivity in the cerebral cortex in “restingstate” data. AJNR Am. J. Neuroradiol. 2001; 22 (7), 1326–1333.
  15. Cordes D., Haughton V.M., Arfanakis K. et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 2000; 21 (9), 1636–1644.
  16. Damoiseaux J.S., Rombouts S.A., Barkhof F. et al. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U. S. A. 2006; 103 (37), 13,848–13,853.
  17. De Luca M., Beckmann C.F., De Stefano N. et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 2006; 29 (4), 1359–1367.
  18. Filippi M. fMRI techniques and protocols. Humana press, 2009: 25.
  19. Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007; 8 (9), 700–711.
  20. Fox M.D., Snyder A.Z., Vincent J.L. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 2005; 102 (27), 9673–9678.
  21. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI in-vestigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005; 26 (1), 15–29.
  22. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI in-vestigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005; 26 (1), 15–29.
  23. Friston K.J., Frith C.D., Liddle P.F., Frackowiak R.S. Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 1993; 13 (1), 5–14.
  24. Greicius M.D., Flores B.H., Menon V. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry. 2007; 62, 429–437.
  25. Greicius M.D., Krasnow B., Reis A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U. S. A. 2003; 100 (1), 253–258.
  26. Greicius M.D., Srivastava G., Reiss A.L., Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U. S. A. 2004; 101 (13), 4637–4642.
  27. Greicius M.D., Supekar K., Menon V., Dougherty R.F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex. 2008; 19 (1), 72–78 (Epub 2008 Apr 9).
  28. Gusnard D.A., Raichle M.E., Raichle M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2001; 2 (10), 685–694.
  29. Larson-Prior L.J., Zempel J.M., Nolan T.S. et al. Cortical network functional connectivity in the descent to sleep. Proc. Natl. Acad. Sci. U. S. A. 2009; 106 (11), 4489–4494.
  30. Liu Y., Liang M., Zhou Y. et al. Disrupted small-world networks in schizophrenia. Brain. 2008; 131 (4), 945.
  31. Lowe M.J., Dzemidzic M., Lurito J.T. et al. Correlations in low-frequency BOLD fluctuations reflect cortico–cortical connections. Neuroimage 2000; 12 (5), 582–587.
  32. Mason M.F., Norton M.I., Van Horn J.D. Wandering minds: the default network and stimulus-independent thought. Science. 2007; 315 (5810), 393–395.
  33. Nir Y., Mukamel R., Dinstein I. et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat. Neurosci. 2008; 11 (9), 8.
  34. Raichle M.E., MacLeod A.M., Snyder A.Z. et al. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 2001; 98 (2), 676–682.
  35. Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007; 37 (4), 1083–1090.
  36. Rombouts S.A., Barkhof F., Goekoop R. et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum. Brain Mapp. 2005; 26 (4), 231–239.
  37. Rombouts S.A., Damoiseaux J.S., Goekoop R. et al. Model-free group analysis shows altered BOLD FMRI networks in dementia. Hum. Brain Mapp. 2009; 30 (1), 256–266.
  38. Salvador R., Suckling J., Coleman M.R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex. 2005a; 15 (9), 1332–1342.
  39. Shmuel A., Leopold D.A. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum. Brain Mapp. 2008; 29 (7), 751–761.
  40. Shmuel A., Yacoub E., Pfeuffer J. et al. Sustained negative BOLD, blood flow and oxygen consumption re-sponse and its coupling to the positive response in the human brain. Neuron. 2002; 36 (6), 1195–1210.
  41. Shmueli K., van Gelderen P., de Zwart J.A. et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 2007; 38 (2), 306–320.
  42. Song M., Zhou Y., Li J. et al. Brain spontaneous functional connectivity and intelligence. Neuroimage 2008; 41 (3), 1168–1176.
  43. Thirion B., Dodel S., Poline J.B. Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage. 2006; 29 (1), 321–327.
  44. van Buuren M., Gladwin T.E., Zandbelt B.B. et al. Cardiorespiratory effects on default-mode network activity as measured with fMRI. Hum. Brain Mapp. 2009; 30 (9), 3031–3042.
  45. van de Ven V.G., Formisano E., Prvulovic D. et al. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum. Brain Mapp. 2004; 22 (3), 165–178.
  46. Van den Heuvel M.P., Hulshoff Pol H.E. Specific somatotopic organization of functional connections of the primary motor network during resting-state. Hum. Brain Mapp. 2010a; 31 (4), 631–644.
  47. Van den Heuvel M.P., Hulshoff Pol H.E. Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharm. 2010b; 20, 519-534.
  48. Van den Heuvel M.P., Mandl R.C., Hulshoff Pol H.E. Normalized group clustering of resting-state fMRI data. PLoS ONE. 2008a; 3 (4), e2001.
  49. Van den Heuvel M.P., Mandl R.C., Luigjes J., Hulshoff Pol H.E. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 2008b; 43 (28), 7.
  50. Van den Heuvel M.P., Stam C.J., Boersma M., Hulshoff Pol H.E. Small-world and scale-free organization of voxel based resting-state functional connectivity in the human brain. Neuro-image. 2008c; 43 (3), 11.
  51. Weissenbacher A., Kasess C., Gerstl F. et al. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage. 2009; 47 (4), 1408–1416.
  52. Whitfield-Gabrieli S., Thermenos H.W., Milanovic S. et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 2009; 106 (4), 1279–1284.
  53. Wise R.G., Ide K., Poulin M.J., Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage. 2004; 21 (4), 1652–1664.
  54. Xiong J., Ma L., Wang B. et al. Long-term motor training induced changes in regional cerebral blood flow in both task and resting states. Neuroimage. 2008; 45 (1), 75–82.



Abstract: 729

PDF (Russian): 583

Article Metrics

Metrics Loading ...



Copyright (c) 2017 Seliverstova E.V., Seliverstov Y.A., Konovalov R.N., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies