Polyamines: their role in normal condition and in disorders of the central neural systems

Cover Page

Cite item

Full Text


Along with a well-studied role of polyamines in the regulation of biosynthesis of protein, RNA and DNA, reparative regeneration and oncopathology, the ability of polyamines to act as modulators of neurotransmitter systems in the brain has been shown. There is growing evidence that metabolic abnormalities of polyamines may lead to the development of a number of the central nervous system (CNS) disorders. The study of this problem is important for understanding the molecular basis of pathogenesis and methods of diagnosis of the CNS disorders, as well as for the development of methods for their pharmacological correction on the basis of influence on the polyamine system.


About the authors

T. T. Berezov

Research Center of Neurology, Russian Academy of Medical Sciences

Email: mgm52@bk.ru
Russian Federation, Moscow

M. G. Makletsova

Department of Biochemistry of the Medical school, People’s Friendship University

Author for correspondence.
Email: mgm52@bk.ru
Russian Federation

T. N. Fedorova

Research Center of Neurology, Russian Academy of Medical Sciences

Email: mgm52@bk.ru
Russian Federation, Moscow


  1. Березов Т.Т., Фролов В.А., Сяткин С.П., Свинарев В.И. Роль полиаминов в функционировании центральной нервной системы и в развитии шизофрении. Вестник РУДН. Серия «Медицина» 2007; 2: 49–57.
  2. Болдырев А.А. Карнозин. Биологическое значение и возможности применения в медицине. М. Изд-во МГУ, 1998.
  3. Журавский А.В., Комиссаров И.В., Стрюченко К.В., Тихонов В.Н. Влияние спермина и глицина на вызванные локальной ишемией мозга нарушения условно-рефлекторных навыков у крыс. Архив. клин. эксперим. мед. 2002; 11: 303–306.
  4. Маклецова М.Г., Ускова Н.И., Бондаренко Т.И. Использование различных источников гамма-аминомасляной кислоты в синтезе гомокарнозина в мозге животных разного возраста. Биохимия 1992; 57: 1348–1351.
  5. Маклецова М.Г., Михалева И.И., Прудченко И.,А., Рихирева Г.Т. Влияние дельта-сониндуцирующего пептида на биосинтез макро-малекул в тканях головного мозга грызунов, подвергнутых стрессу. Бюл. эксперим. биол. мед. 2006; 141: 400–403.
  6. Bachrach U. Function of naturally occuring polyamines. N.Y.: Acad. Press, 1973.
  7. Bolognesi M.L., Banzi R., Bartolini M. et al. Novel class of quinonebearing polyamines as multi-target-directed ligands to combat Alzheimer`s disease. J. Med. Chem. 2007; 50: 4882–4897.
  8. Carney J.M., Hall N.C., Chenq M. et al. Protein and lipid oxidation following ischemia/reperfusion injury, the role of polyamines: an electron paramagnetic resonance. Adv. Neurol. 1996; 71: 259–268.
  9. Childs A.C., Mehta D.J., Gerner E.W. Polyamine-dependent gene expression. Cell Mol. Life Sci. 2003; 60: 1394–1406.
  10. Cohen L.F., Lundgren D.W., Farrell P.M. Distribution of spermidine and spermine in blood from cystic fibrosis patients and control subjects. Blood 1976; 48: 469–475.
  11. Colton C.A., Xu Q., Burke J.R. et al. Disrupted spermine homeostasis: a novel mechanism in polyglutamine-mediated aggregation and cell death. J. Neurosci. 2004; 24: 7118–7127.
  12. Efremov O.M., Serdyuk S.E., Gmiro V.E. Effect of modulators of the polyamine site on the development of seizures induced by systemic and intracerebral administration of N-methyl-D-aspertate in albino mice. Bull. Exp. Biol. Med. 2007; 143: 620–622.
  13. Gilad G.M., Gilad V.H. Overview of the brain polyamine-stressresponse: regulation, development, and modulation by lithium and role in cell survival. Cell Mol. Neurobiol. 2003; 23: 637–649.
  14. Gilad G.M., Gilad V.H. Stress-induced dynamic changes in mouse brain polyamines. Role in behavioral reactivity. Brain Res. 2002; 5: 23–29.
  15. Gomes-Trolin C., Nygren I., Aquilonius S.-M., Askmark H. Increased red blood cell polyamines in ALS and Parkinson’s disease. Exp. Neurol. 2002; 177: 515–520.
  16. Hayashi S., Murakami Y., Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem. Sci. 1996; 21: 27–30.
  17. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation 1981; 19: 1–20.
  18. Heinrich-Hirsch B., Ahlers J., Peter H.W. Inhibition of Na,KATPase from chick brain by polyamines. Enzyme 1977; 22: 235–241.
  19. Igarashi K., Kashiwagi K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010; 42: 39–51.
  20. Igarashi K., Kaskiwagi K. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem. 2010; 48: 506–512.
  21. Ivanova S., Botchkina G.I., Al-Abed Y. et al. Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. J. Exp. Med. 1998; 20: 327–340.
  22. Koenig H., Goldstone A.D., Lu C.Y. Blood brain barrier breakdown in brain edema following cold injury is mediated by microvascular polyamines. Biochem. Biophys. Res. Commun. 1983; 116: 1039–1048.
  23. Lewandowski N.M., Shulin J., Verbitsky M. et. al. Polyamine pathway contributes to the phathogenesis of Parkinson disease. PNAS 2010; 107: 16970–16975.
  24. Milovic V. Polyamines in the gut lumen: bioavailability and biodistribution. Eur. J. Gastroenterol. Hepatol. 2001; 13: 1021–1025.
  25. Morkin J.B., Renaud L.P. Pulsatile growth hormone secretion. Science 1974; 186: 538–540.
  26. Nishimura K., Shiina R., Kashiwagi K., Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J. Biochem, 2006; 139: 81–90.
  27. Paschen W., Widmann R., Weber C. Changes in regional polyamine profiles in rat brains after transient cerebral ischemia (single versus repetitive ischemia): evidence for release of polyamines from injured neurons. Neurosci. Lett. 1992; 135: 121–124.
  28. Pegg A.E. Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator. Am. J. Physiol. Endocrinol. Metab. 2008; 294: E995–E1010.
  29. Persson L. Polyamine homoeostasis. Essays Biochem. 2009; 4: 11–24.
  30. Ramakrishnan M., Wenqenack T.M., Kandimalla K.K. et al. Selective contrast enhancement of individual Alzheimer’s disease amyloid plaques using a polyamine and Gd-DOTA conjugated antibody fragment against fibrillar Abeta42 for magnetic resonance molecular imaging. Pharm. Res. 2008; 25: 1861–1872.
  31. Randi A.S., Hernandez S., Alvarez L. et. al. Hexachlorobenzeneinduced early changes in ornithine decarboxylase and protein tyrosine kinase activities, polyamines and c-Myc, c-Fos and c-Jun proto-oncogenes in rat liver. Toxicol. Sci. 2003; 76: 291–298.
  32. Regunathan S. Agmatine: Biological Role and Therapeutic Potentials in Morphine Analgesia and Dependence. The AAPS Journal 2006; 8 (3): Article 56 (http://www.aapsj.org).
  33. Rudman D., Kutner M.H., Chawla R.K., Goldsmith M.A. Abnornal polyamine metabolism in hereditary muscular dystrophies effect of human growth hormone. J. Clin. Invest. 1980; 65: 95–101.
  34. Russell D.H. Clinical relevance of polyamines as biochemical markers of tumor kinetics. Clin. Chem. 1977; 23: 22–27.
  35. Savory J., Shipe J.R. Serum and urine polyamines in cancer. Ann. Clin. Lab. Sci. 1975; 5: 110–114.
  36. Schipper G., Verhofstad A.J. Distribution patterns of ornithine decarboxylase in cells and tissues: facts, problems, and postulates. J. Histochem. Cytochem. 2002; 50: 1143–1160.
  37. Schipper R.G., Penning L.C., Verhofstad A.A. Involvement of polyamines in apoptosis: facts and controversies: effects or protectors? Semin. Cancer Biol. 2000; 10: 55–68.
  38. Schuber F. Influence of polyamines on membraine functions. Biochem. J. 1989; 260: 1–10.
  39. Seiko R., Nishimura K., Ishii I. et al. Intense correlation between brain infarction and protein-conjugated acrolein. Stroke 2009; 40: 3356–3361.
  40. Seiler N. Assay procedures for polyamines in urine, serum, and cerebrospinal fluid. Clin. Chem. 1977; 23: 1519–1526.
  41. Seiler N. Polyamines and apoptosis. J. Cell Mol. Med. 2005; 9: 623–642.
  42. Seiler N. Polyamines. In: Handbook of neurochemistry (ed. A. Laitha). N.Y.: Plenum Publ., 1982; 1: 223–255.
  43. Seiler N. Polyamines. Amino Acids 2004; 1: 1–25.
  44. Suorsa A., Hietala O., Pajunen A. Developmental expression of ornithine and S-aden;sylmethionine decarboxylases in mouse brain. Biochem. Biophys. Res. Commun, 1992; 184: 1114–1118.
  45. Thomas T., Thomas T.J. Polyamines in cell growth and cell death: mechanisms and therapevtic application. Cell Moll. life Sci. 2001; 58: 244–258.
  46. Wengenack T.M., Curran G.L., Olson E.E., Poduslo J.F. Putrescinemodified catalase with preserved enzymatic activity exhibits increased permeability at the blood-nerve and blood-brain barriers. Brain Res. 1997; 767: 128–135.
  47. Wong-Baeza C., Bustos I., Serna M. et. al. Membrane fusion inducers, chloroquine and spermidine increase spermidine increase lipoplexmediated gene transfection. Biochem. Biophys. Res. Commun. 2010; 396: 549–554.
  48. Yatin S.M., Yatin M., Varadarajan S. et al. Role of spermine in amyloid beta-peptide-associated free radical-induced neurotoxicity. J. Neurosci. Res. 2001; 63: 395–401.

Supplementary files

Supplementary Files

Copyright (c) 2012 Berezov T.T., Makletsova M.G., Fedorova T.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies