Predictors of pharmacoresistance in adults with epilepsy

Cover Page


Six hundred ninety-six patients with epilepsy were examined. Clinical and neurological examinations, routine EEG and/or video-EEG monitoring, MRI and/or CT of the brain, and laboratory tests were performed. Antiepileptic pharmacotherapy was either prescribed for the first time or corrected if it was prescribed before. Factors associated with pharmacoresistance were analyzed, such as: onset in infancy or early childhood, high frequency of seizures, failures in the previous pharmacotherapy, diffuse epileptiform activity or abnormal background activity according to EEG, progressive brain lesion etc. According to the obtained data, only non-compliance (r=0.31; p<0.001) and high frequency of seizures (r=0.31; p<0.001) were significant predictors of pharmacoresistance. Routine EEG and MRI are not informative enough for prediction of pharmacoresistance of epilepsy. Accurate patient examination and identification of a certain epileptic syndrome are necessary for correct prognosis of pharmacoresistance.


About the authors

A. S. Kotov

M.F. Vladimirsky Moscow Regional Research Clinical Institute

Author for correspondence.
Russian Federation


  1. Aicardi J. Epilepsy in Children. New York: Raven Press; 1986:39–65.
  2. Arts W.F., Geerts A.T., Brouwer O.F. et al. The early prognosis of epilepsy in childhood: the prediction of a poor outcome. The Dutch study of epilepsy in childhood. Epilepsia. 1999; 40: 726–734.
  3. Avoli M., Barbarosie M., Lucke A. et al. Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci. 1996; 16: 3912–3924.
  4. Babb T.L., Ying Z., Mikuni N. et al. Brain plasticity and cellular mechanisms of epileptogenesis in human and experimental cortical dysplasia. Epilepsia. 2000; 41[suppl 6]: S76–S81.
  5. Bartolomei F., Wendling F., Regis J. et al. Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy. Epilepsy Res. 2004; 61: 89–104.
  6. Berg A.T., Shinnar S., Levy S.R. et al. Early development of intractable epilepsy in children: a prospective study. Neurology. 2001; 56: 1445–1452.
  7. Bernard C., Cossart R., Hirsch J.C. et al. What is GABAergic inhibition? How is it modified in epilepsy? Epilepsia. 2000; 41[suppl 6]: S90–S95.
  8. Blumenfeld H., McCormick D.A. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurophysiol. 2000; 20: 5158–5162.
  9. Bragin A., Engel J.Jr., Wilson C.L. et al. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia. 1999; 40: 127–137.
  10. Collins R.C., Tearse R.G., Lothman E.W. Functional anatomy of limbic seizures: focal discharges from medial entorhinal cortex in rat. Brain Res. 1983; 280: 25–40.
  11. Dlugos D.J., Sammel M.D., Strom B.L. et al. Response to first drug trial predicts outcome in childhood temporal lobe epilepsy. Neurology. 2001; 57: 2259–2264.
  12. Doi T., Ueda Y., Tokumaru J. et al. Sequential changes in glutamate transporter mRNA levels during Fe(3+)-induced epileptogenesis. Brain Res Mol Brain Res. 2000; 75: 105–112.
  13. Engel J.Jr. The goal of epilepsy therapy: no seizures, no side effects, as soon as possible. CNS Spectr. 2004; 9: 95–97.
  14. Engel J.Jr. Mesial temporal lobe epilepsy: what have we learned? Neuroscientist. 2001; 7: 340–352.
  15. Genton P., Guerrini R., Dravet C. The Lennox-Gastaut syndrome. In: Meinardi H, ed. Handbook of Clinical Neurology, Vol. 73(29): The Epilepsies, Part II. Amsterdam: Elsevier; 2000: 211–222.
  16. Goussakov I.V., Fink K., Elger C.E. et al. Metaplasticity of mossy fiber synaptic transmission involves altered release probability. J Neurosci. 2000; 20: 3434–3441.
  17. Grooms S.Y., Jones L.S. Hippocampal in vitro kindling is not blocked by nitric oxide synthase inhibitors. Neuroreport. 1994; 5: 1102–1104.
  18. Hablitz J.J., DeFazio R.A. Altered receptor subunit expression in rat neocortical malformations. Epilepsia. 2000; 41(suppl 6): S82–S85.
  19. Hablitz J.J. Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex. J. Neurophysiol. 1987; 58: 1052–1065.
  20. Hammond E.J., Ramsay R.E., Villarreal H.J. et al. Effects of intracortical injection of blood and blood components on the electrocorticogram. Epilepsia. 1980; 21: 3–14.
  21. Kabuto H., Yokoi I., Habu H. et al. Reduction in nitric oxide synthase activity with development of an epileptogenic focus induced by ferric chloride in the rat brain. Epilepsy Res. 1996; 25: 65–68.
  22. Kim U., Sanchez-Vives M.V., McCormick D.A. Functional dynamics of GABAergic inhibition in the thalamus. Science. 1997; 278: 130–134.
  23. Kim W.J., Park S.C., Lee S.J. et al. The prognosis for control of seizures with medications in patients with MRI evidence of mesial temporal sclerosis. Epilepsia. 1999; 40: 290–293. 24. Kuzniecky R., Jackson G. Developmental disorders. In: Engel J Jr, Pedley TA, eds. Epilepsy. Philadephia: Lippincott-Raven; 1997: 2517–2532.
  24. Kuzniecky R., Morawetz R., Faught E. et al. Frontal and central lobe focal dysplasia: clinical, EEG and imaging features. Dev Med Child Neurol. 1995; 37(2): 159–166.
  25. Kwan P., Brodie M.J. Early identification of refractory epilepsy. N Engl J Med. 2000; 342: 314–319.
  26. Leung L.S., Wu K. Epilepsy-based changes in hippocampal excitability: causes and effects. In: Blume WT, ed. Intractable Epilepsies. Adv Neurol. 2006; 97: 63–68.
  27. Lieberman D.N., Mody I. Properties of single NMDA-receptor channels in human dentate gyrus granule cells. J Physiol. 1999; 518: 55–70.
  28. Mares P. Ontogenetic development of bioelectrical activity of the epileptogenic focus in rat neocortex. Neuropadiatrie. 1973; 4: 434–445.
  29. Mikuni N., Babb T.L., Ying Z. et al. NMDA-receptors 1 and 2A/B coassembly increased in human epileptic focal cortical dysplasia. Epilepsia. 1999; 40: 1683–1687.
  30. Najm I.M., Ying Z., Babb T. et al. Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia. 2000; 41: 971–976.
  31. Richardson M.P., Hammers A., Brooks D.J. et al. Benzodiazepine- GABA(A) receptor binding is very low in dysembryoplastic neuroepithelial tumor: a PET study. Epilepsia. 2001; 42: 1327–1334.
  32. Semah F., Picot M.C., Adam C. et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology. 1998; 51: 1256–1262.
  33. Singh R., Pathak D.N. Lipid peroxidation and glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and glucose- 6-phosphate dehydrogenase activities in FeC13-induced epileptogenic foci in the rat brain. Epilepsia. 1990; 31: 15–26.
  34. Spreafico R., Tassi L., Colombo N. et al. Inhibitory circuits in human dysplastic tissue. Epilepsia. 2000; 41 (suppl 6): S168–S173.
  35. Starreveld E., Guberman A. The spectrum of intractable epilepsy: a proposed scale. Adv Neurol. 2006;97:493–496.
  36. Steriade M., Timofeev I., Durmuller N. et al. Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz.) spike bursts. J Neurophysiol. 1998;79:483–490. 38. Von Oertzen J., Urbach H., Jungbluth S. et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J. Neurol. Neurosurg. and Psychiatry. 2002; 73: 643–674.
  37. Willmore L.J., Sypert G.W., Munson J.B. Recurrent seizures induced by cortical iron injection: a model of posttraumatic epilepsy. Ann Neurol. 1978; 4: 329–336.
  38. Wu K., Leung L.S. Enhanced but fragile inhibition in the dentate gyrus in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis. Neuroscience. 2001; 104: 379–396. 41. Zhu W.J., Roper S.N. Reduced inhibition in an animal model of cortical dysplasia. J Neurosci. 2000; 20: 8925–8931.



Abstract: 1095

PDF (Russian): 715

Article Metrics

Metrics Loading ...



Copyright (c) 2012 Kotov A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies