Preconditioning as a method of neuroprotection in a model of brain infarct

Cover Page

Abstract

Preconditioning of ischemic and hypoxic type was investigated as a method of protecting brain against acute ischemic injury. The preconditioning methods were applied to experimental rats 24 h before the time when local brain infarct was done by middle cerebral artery occlusion (MCAO). It was found that the ischemic and hypoxic preconditioning resulted in three general morphological changes: 1) the size of infarct zone was reduced by 2.2–3.8 times compared with rats that had not been treated with the preconditioning before MCAO; 2) the preconditioning treatment retained the number of living neurons in penumbra at the level of control rats, while without the preconditioning neuronal count in the penumbra after MCAO was 29% lower; 3) the number of glial cells in penumbra was increased after MCAO by 38% compared with the control level, and continued to increase under the preconditioning treatment up to 60%, that suggests an important role of neuroglia in neuroprotection. Selective blockers of ATP2dependant K+2channels (52hydroxydecanoate and glibenclamide) completely abolished the neuroprotective effects of the preconditioning.

 

About the authors

R. M. Khudoerkov

Research Center of Neurology, Russian Academy of Medical Sciences

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

N. S. Samojlenkova

M.V. Lomonosov Moscow State University, Moscow

Email: platonova@neurology.ru
Russian Federation

S. A. Gavrilova

Research Center of Neurology, Russian Academy of Medical Sciences

Email: platonova@neurology.ru
Russian Federation

Yu. A. Pirogov

M.V. Lomonosov Moscow State University, Moscow

Email: platonova@neurology.ru
Russian Federation

V. B. Koshelev

M.V. Lomonosov Moscow State University, Moscow

Email: platonova@neurology.ru
Russian Federation

References

  1. Верещагин Н.В., Моргунов В.А., Гулевская Т.С. Патология головного мозга при атеросклерозе и артериальной гипертонии. М.: Медицина, 1997.
  2. Власов Т.Д., Коржевский Д.Э., Полякова Е.А. Ишемическая адаптация головного мозга крысы как метод защиты эндотелия от ишемического/реперфузионного повреждения. Рос. физиол. журн. им..ИМ. Сеченова. 2004; 90: 40–48.
  3. Гусев Е.И., Скворцова В.И. Ишемия головного мозга. М.: Медицина, 2001.
  4. Данилов Р.К. Гистология. Эмбриология. Цитология. М.: Медицинское информационное агентство, 2006.
  5. Кошелев В.Б., Крушинский А.Л., Рясина Т.В. и др. Влияние кратковременной адаптации к гипоксии на развитие острых нарушений мозгового кровообращения у крыс, генетически предрасположенных к эпилепсии. Бюлл. эксп. биол. и мед. 1987; 103: 373–376.
  6. Суслина З.А., Варакин Ю.Я. Эпидемиологические аспекты изучения инсульта. Время подводить итоги. Анн. клин. эксперимент. неврол. 2007; 1: 22–28.
  7. Суслина З.А., Пирадов М.А., Танашян М.М. Принципы лечения острых ишемических нарушений мозгового кровообращения. В кн.: Суслина З.А. (ред.) Очерки ангионеврологии. М.: Атмосфера, 2005: 206–215.
  8. Back T. Pathophysiology of the ishemic penumbra – revision of a concept. Cellular and Molecular Neurobiology. 1998; 18: 621–638.
  9. Ballanyi K. Protective role of neuronal KATP channels in brain hypoxia. J. Exp. Biol. 2004; 207: 3201–3212.
  10. Barone F.C., White R.F., Spera P.A. et al. Ishemic preconditioning and brain tolerance. Temporal histological and functional out- comes, protein synthesis requirement, interleukin21 receptor antagonist and early gene expression. Stroke. 1998; 29: 1937–1951.
  11. Cadet J.L., Krasnova I.N. Cellular and molecular neurobiology of brain preconditioning. Mol. Neurobiol. 2009; 39: 50–61.
  12. Chen S.T., Hsu C.Y., Hogan E.L. et al. A model of focal ishemic stroke in the rat: reproducible extensive cortical infarction. Stroke.1986; 17: 738–743.
  13. Davis S.M., Donnan G.A. Using mismatch on MRI to select thrombolytic responders an attractive yepothesis awaiting confirmation. Stroke. 2005; 36: 1100–1101.
  14. Dirnagl U., Becker K., Meisel A. Preconditioning and tolerance against cerebral ishemia: from experimental strategies to clinical use. Lancet Neurol. 2009; 8: 398 –412.
  15. Hinkle J.L., McKenna Guanci M. Acute ischemic stroke review. Journal of neuroscience nursing. 2007; 39 (5): 285–310.
  16. Hossmann K.A. Pathophysiology and therapy of experimental stroke. Cellular and Molec. Neurobiol. 2006; 26: 1057–1083.
  17. Ito U., Kuroiwa T., Nagasao J. et al. Temporal profiles of axon terminals, synapses and spines in the ishemic penumbra of the cerebral cortex: ultrastructure of neuronal remodeling. Stroke. 2006; 37: 2134–2139.
  18. Mabuchi T., Kitagawa K., Ohtsuki T. et al. Contribution of microglia / macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000; 31: 1735–1743.
  19. Manuchina E.B., Downey H.F., Mallet R.T. Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia . Exp. Biol. Med. 2006; 231: 343–365.
  20. Miller B.A., Perez R.S., Shah A.R. et al. Cerebral protection by hypoxic preconditioning in the murine model of focal ischemia-reperfusion. Neuroreport. 2001; 12: 1663–1669.
  21. Nedergaard M., Vorstrup S., Astrup J. Cell density in border zone around old small human brain infarcts. Stroke. 1986; 17: 1129–1137.
  22. Obrenovitch T.P. Molecular physiology of precondicioning-induced brain tolerance to ishemia. Physiol. Rev. 2008; 88: 211–247.
  23. Racay P., Tatarcova Z., Drgova A. et al. Effect of ishemic preconditioning on mitochondrial dysfunction and mitochondrial P53 translocation after transient global cerebral ishemia in rats. Neurochem. Rec. 2007; 32: 1823–1832.
  24. Raval A.P., Dave K.R., DeFazio R.A. et al. PKC phosphorylates the mitochondrial K+ ATP channel during induction of ishemic preconditioning in the rat hippocampus. Brain Res. 2007; 1184: 345–353.
  25. Stenzel Poore M.P., Stevens S.L., King J.S., et al. Preconditioning reprograms the response to ishemic injury and primes the emer gence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke 2007; 38: 680–685.
  26. Verkhartsky A., Butt A. Glial neurobiology. John Wiley & Sons, 2007.
  27. Watanabe M., Katsura K., Ohsawa I. et al. Involvement of mitoK+ ATP channel in protective mechanisms of cerebral ischemic
  28. tolerance. Brain Res. 2008; 1238: 199 –207.

Statistics

Views

Abstract: 1062

PDF (Russian): 704

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2017 Khudoerkov R.M., Samojlenkova N.S., Gavrilova S.A., Pirogov Y.A., Koshelev V.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies