Virtual reality in neurorehabilitation

Cover Page

Cite item

Full Text





About the authors

K. I. Ustinova

Central Michigan University

United States, Mount Pleasant

Lyudmila A. Chernikova

Reseach Center of Neurology

Author for correspondence.
Russian Federation, Moscow


  1. Анохин П.К. Единство центра и периферии в нервной деятельности. Физиол. журн. СССР 1935; 19: 21–28.
  2. Бернштейн Н.А. Очерки по физиологии движения и физиологии активности. М.: Медицина, 1966.
  3. Столярова Л.Г., Ткачева Г.Р. Реабилитация больных с постинсультными двигательными расстройствами. М.: Медгиз, 1978.
  4. Carr J.H., Shepherd R.B. A motor relearning programme for stroke. Rockville: Aspen Publishers, 2nd ed., 1987.
  5. Cirstea M.C., Levin M.F. Compensatory strategies for reaching in stroke. Brain 2000; 123: 940–953.
  6. Bourbonnais D., Vanden Noven S. Weakness in patients with hemiparesis. Am. J. Occup. Ther. 1989; 43: 313–319.
  7. Bourbonnais D., Vanden Noven S., Pelletier R. Incoordination in patients with hemiparesis. Can. J. Public Health 1992; 83 (Suppl. 2): S58–S63.
  8. Bronstein A.M. Visual vertigo syndrome: clinical and posturography findings. J. Neurol. Neurosurg. Psychiatry 1995; 59: 472–476.
  9. Di Fabio R.P., Badke M.B. Stance duration under sensory conflict conditions in patients with hemiplegia. Arch. Phys. Med. Rehabil. 1991; 72: 292–295.
  10. Garland S.J., Willems D.A., Ivanova T.D. et al. Recovery of standing balance and functional mobility after stroke. Arch. Phys. Med. Rehabil. 2003; 84: 1753–1759.
  11. Georgiou N., Iansek R., Bradshaw J.L. et al. An evaluation of the role of internal cues in the pathogenesis of parkinsonian hypokinesia. Brain 1993; 116: 1575–1578.
  12. Gurfinkel V.S., Levik Yu.S. Sensory complexes and sensomotor integration. Hum. Physiol. 1979; 5: 269–281.
  13. Harris J.M., Bonas W. Optic flow and scene structure do not always contribute to the control of human walking. Vision Res. 2002; 42: 1619–1626.
  14. Holden M.K., Dyar T.A., Dayan Cimadoro L. Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2007; 15: 36–42.
  15. Horak F.B., Nashner L.M., Diener H.C. Postural strategies associated with somatosensory and vestibular loss. Exp. Brain Res. 1990; 82:167–177.
  16. Jeka J.J., Lackner J.R. Fingertip contact influences human postural control. Exp. Brain. Res. 1994; 100: 495–502.
  17. Jiang Y., Norman K.E. Effects of visual and auditory cues on gait initiation in people with Parkinson’s disease. Clin. Rehabil. 2006; 20: 36–45.
  18. Keshner E.A., Kenyon R.V. Using immersive technology for postural research and rehabilitation. Asst. Technol. 2004; 16: 27–35.
  19. Kim N.G., Yoo C.K., Im J.J. A new rehabilitation training system for postural balance control using virtual reality technology. IEEE Transactions on Rehabilitation Engineering 1999; 7: 482–485.
  20. Kizony R., Raz L., Katz N. et al. Videoocapture virtual reality system for patients with paraplegic spinal cord injury. J. Rehabil. Res. Dev. 2005; 42: 595–608.
  21. Knutsson E., Richards C. Different types of disturbed motor control in gait of hemiparetic patients. Brain 1979; 102: 405–430.
  22. Kuo A.D., Speers R.A., Peterka R.J. et al. Effect of altered sensory conditions on multivariate descriptors of human postural sway. Exp. Brain Res. 1998; 122: 185–195.
  23. Lamontagne A., Fung J., McFadyen B.J. et al. Modulation of walking speed by changing optic flow in persons with stroke. J. Neuroengineering Rehabil. 2007; 4: 22.
  24. Lestienne F., Soechting J., Berthoz A. Postural readjustments induced by linear motion of visual scenes. Exp. Brain. Res. 1977; 28 (334): 363–384.
  25. Levin M.F., Michaelsen S.M., Cirstea C.M. et al. Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp. Brain Res. 2002; 143: 171–180.
  26. Luo X., Kline T., Fischer H. et al. Integration of augmented reality and assistive devices for posttstroke hand opening rehabilitation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005; 7: 6855–6858.
  27. Marigold D.S., Eng J.J., Tokuno C.D. et al. Contribution of muscle strength and integration of afferent input to postural instability in persons with stroke. Neurorehabil. Neural Repair 2004; 18: 222–229.
  28. Marsden C.D. Neurophysiology. In: Stern G.N. (ed.) Parkinson’s disease. London: Chapman & Hall, 1990.
  29. Mergner T., Schweigart G., Maurer C. et al. Human postural responses to motion of real and virtual visual environments under different support base conditions. Exp. Brain Res. 2005; 167: 535–556.
  30. Olney S.J., Griffin M.P., McBride I.D. Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Phys. Ther. 1994; 74: 872–885.
  31. Pailhous J., Ferrandez A.M., Fluckiger M. et al. Unintentional modulations of human gait by optical flow. Behav. Brain Res. 1990; 38: 275–281.
  32. Piron L., Cenni F., Tonin P. et al. Virtual Reality as an assessment tool for arm motor deficits after brain lesions. Stud. Health Technol.Inform. 2001; 81: 386–392.
  33. Rand D., Katz N., Weiss P.L. Evaluation of virtual shopping in the VMall: Comparison of post-stroke participants to healthy control groups. Disabil. Rehabil. 2007; 13; 1–10.
  34. Slijper H., Latash M.L., Rao N. et al. Task-specific modulation of anticipatory postural adjustments in individuals with hemiparesis. Clin. Neurophysiol. 2002; 113: 642–655.
  35. Stelmach G., Phillips J.G. Motor control in Parkinson’s disease. N.Y.: Churchill Livingstone, 1992.
  36. Subramanian S., Knaut L.A., Beaudoin C. et al. Virtual reality environments for post-stroke arm rehabilitation. J. Neuroengineering Rehabil. 2007; 4: 20.
  37. Thornton M., Marshall S., McComas J. et al. Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj. 2005; 19: 989–1000.
  38. Trombly C.A., Thayer Nason L., Bliss G. et al. The effectiveness of therapy in improving finger extension in stroke patients. Am. J. Occup. Ther. 1986; 40: 612–617.
  39. Weiss P.L., Rand D., Katz N. et al. Video capture virtual reality as a flexible and effective rehabilitation tool. J. Neuroengineering Rehabil. 2004; 1: 12.
  40. Yano H., Kasai K., Saitou H. et al. Development of a gait rehabilitation system using a locomotion interface. J. Visual. Comput. Anim. 2003; 14: 243–252.

Supplementary files

Supplementary Files

Copyright (c) 2008 Ustinova K.I., Chernikova L.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies