Neuron-astroglial interactions in dysregulation of energy metabolism in perinatal ischemic brain damage

Abstract

Presented is a review of the literature on the problem of hypoxic-ischemic perinatal brain damage in the context of alterations of astroglial regulation of neuronal energy metabolism and mechanisms of excitotoxicity. Characteristics of energy metabolism in the developing brain responsible for specificity of its damage in perinatal period, as well as cell and molecular mechanisms of disturbances of neuron-astrocyte coupling controlling regulation of neuroplasticity are discussed.

 

About the authors

A. B. Salmina

Krasnoyarsk State Medical Academy

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

S. O. Okuneva

Krasnoyarsk State Medical Academy

Email: platonova@neurology.ru
Russian Federation

T. E. Taranushenko

Krasnoyarsk State Medical Academy

Email: platonova@neurology.ru
Russian Federation

A. A. Fursov

Krasnoyarsk State Medical Academy

Email: platonova@neurology.ru
Russian Federation

S. V. Prokopenko

Krasnoyarsk State Medical Academy

Email: platonova@neurology.ru
Russian Federation

S. V. Mikhutkina

Krasnoyarsk State Medical Academy

Email: platonova@neurology.ru
Russian Federation

N. A. Malinovskaya

Krasnoyarsk State Medical Academy

Email: platonova@neurology.ru
Russian Federation

G. A. Tagaeva

Krasnoyarsk State Medical Academy

Email: platonova@neurology.ru
Russian Federation

References

  1. Барашнев Ю.И., Розанов А.В., Панов В.О. и др. Роль гипоксическиитравматических повреждений головного мозга в формировании инвалидности с детства. Педиатрия 2006; 4: 41.
  2. Здоровье матерей и новорожденных в Европейском регионе ВОЗ: актуальные задачи и пути их решения.
  3. http://www.euro.who.int/document/Mediacentre/ fs0305r.pdf.
  4. Качурина Д.Р., Саулебекова Л.О., Алмагамбетова А.Н. Особенности психоэмоционального развития и психосоматических дисфункций у детей с перинатальными поражениями ЦНС. Рос. вестн. перинатол. педиатр. 2006; 2: 41–43.
  5. Чехонин В.П., Лебедев С.В., Блинов Д.В. и др. Патогенетическая роль нарушения проницаемости гематоэнцефалического барьера для нейроспецифических белков при перинатальных гипоксичее
  6. скииишемических поражениях центральной нервной системы у новорожденных. Вопр. гинекол. акуш. перинатол. 2004; 3: 50–61.
  7. Янушанец Н.С. Анализ уровня и структуры детской инвалидности вследствие заболеваний нервной системы в СанкттПетербурге. Рос. вестн. перинатол. педиатр. 2006; 4: 53–55.
  8. Abbot N.J., Ronnback L., Hansson E. Astrocyteeendothelial interactions at the blooddbrain barrier. Nature Reviews. Neuroscience 2006; 7:41–53.
  9. Alano C.C., Ying W., Swanson R.A. Poly(ADPPribose)polymerasee mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J. Biol. Chem. 2004; 279:18895–18902.
  10. Almeida A., Almeida J., Bolanos J.P. et al. Different responses of astrocytes and neurons to nitric oxide: The role of glycolyticallyygenerated ATP in astrocyte protection. Proc. Natl. Acad. Sci. 2001; 98:
  11. –15299.
  12. Araque A., Sanzgiri R.P., Parpura V. et al. Calcium elevation in astrocytes causes an nmda receptorrdependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 1998; 18: 6822–6829.
  13. Bambrick L., Kristian T., Fiskum G. Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochemical Res. 2004; 29: 601–608.
  14. Benjelloun N., Renolleau S., Represa A. et al. Inflammatory responnses in the cerebral cortex after ischemia in the P7 neonatal rat. Stroke 1999; 30: 1916–1924.
  15. Blomgren K., Zhu C., Wang X. et al. Synergistic activation of caspasee3 by mmcalpain after neonatal hypoxiaaischemia. J. Biol. Chem. 2001; 276: 10191–10198.
  16. Bruzzone S., Franco L., Guida L. et al. A selffrestricted CD388conexin 43 crossstalk affects NAD+ and cyclic ADPPribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J. Biol. Chem.
  17. ; 276: 48300–48308.
  18. Bueno D., Azzolin I.R., Perry M.L.S. Ontogenic study of glucose and lactate utilisation by rat cerebellum slices. Med. Sci. Res. 1994; 22: 631–632.
  19. Chen Y., Vartiainen N.E., Ying W. et al. Astrocytes protect neurons from nitric oxide toxicity by a lutathioneedependent mechanism. J. Neurochem. 2001; 77: 1601–1610.
  20. Contreras J.E., Sanchez H.A., Eugenin E.A. et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in
  21. culture. Proc. Natl. Acad. Sci. 2001; 10.1073/pnas.012589799/.
  22. Covey M.V., Lewison S.W. Pathophysiology of perinatal hypoxiaischemia and the prospects for repair from exogenous and endogenous stem cells. NeoReviews 2006; 7: e353.
  23. Evans W.H., Martin P.E. Gap junctions: structure and function. Mol. Membr. Biol. 2002; 19: 1211136.
  24. Fellin T., Carmignoto G. Neuron to astrocyte signalling in the brain represents a distinct multifunctional unit. J. Physiol. 2004; 559: 3–15.
  25. Fern R., Moller T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J. Neuroscience 2000; 20: 34–42.
  26. Ferriero M.D. Neonatal Brain Injury. New Engl. J. Med. 2004; 351:1985–1995.
  27. Giffard R.G., Swanson R.A. Ischemiaainduced programmed celdeath in astrocytes. Glia 2005; 50: 299–306.
  28. Hatton G.I. Gliallneuronal interactions in the mammalian brain. Adv. Physiol. Edu. 2002; 26: 225–237.
  29. Haydon P.G., Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 2006; 86: 1009–1031.
  30. Higashida H., Hashii M., Yokoyama S. et al. Cyclic ADPPribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADPPribosyl cyclase. Pharmacol. Therapeutics 2001;
  31. : 283–296.
  32. Higashida H., Salmina A.B., Olovyannikova R.Ya. et al. Cyclic ADPribose as a universal calcium signal molecule in the nervous system.Neurochem. Int. 2007; 51; 192–199.
  33. Jacobson J., Duchen M.R. Mitochondrial oxidative stress and cell death in astrocytes – requirement for stored Ca2+ and sustained opening of the permeability transition pore. J. Cell Sci. 2002; 115: 1175–1188.
  34. Jensen F.E., Wang C., Stafstrom C.E. et al. Acute and chronic increases in excitability in rat hippocampal slices after hypoxia in vivo. J. Neurophysiol. 1998; 79: 73–81.
  35. Kalman M., Szabo A. Immunohistochemical investigation of actinanchoring proteins vinculin, talin and paxillin in rat brain following lesion: a moderate reaction,confined to the astroglia of brain tracts. Exp. Brain Res. 2001; 139: 426–434.
  36. Kann O., Kovacs R. Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 2007; 292: C641–C657.
  37. Jensen F.E. Role of glutamate receptors in periventricular leukomalacia. J. Child Neurol. 2005; 20: 950–959.
  38. Lalo U., Pankratov Yu., Kirchhoff F. et al. NMDA receptors mediate neuronntooglia signaling in mouse cortical astrocytes. J. Neurosci. 2006; 26: 2673–2683.
  39. Lubec B., ChiappeeGutierrez M., Hoeger H. et al. Glucose transporters, hexokinase, and phosphofructokinase in brain of rats with perinaatal asphyxia. Pediatric Res. 2000; 47: 84–88.
  40. Magistretti P.J. Neuronnglia metabolic coupling and plasticity. J. Exp. Biol. 2006; 209: 2304–2311.
  41. Mattson M.P. Apoptotic and antiiapoptotic synaptic signaling mechanisms. Brain Pathol. 2000; 10: 300–312.
  42. Matyash M., Matyash V., Nolte C. et al. Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB J. 2002; 16: 84–86.
  43. Meldrum B.S. Glutamate as neurotransmitter in the brain: rewiew of physiology and patology. J. Nutrition 2000; 1007S–1015S.
  44. Nakajima W., Ishida A., Lange M.S. et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J. Neurosci. 2000; 20: 7994–8004.
  45. Nakamura Y., Nakashima T., Fukuda S. et al. Hypoxiccischemic brain lesions found in asphyxiating neonates. Acta Pathol. Jpn. 1986; 36: 551–563.
  46. Nakase N., Sohl G., Theis M. et al. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin 43 in astrocytes. Am. J. Pathol 2004; 164: 2067–2075.
  47. Pulera M.R., Adams L.M., Liu H. et al. Apoptosis in neonatal rat model of cerebral hypoxiaaischemia. Stroke 1998; 29: 2622–2630.
  48. Salmina A.B., Olovyannikova R.Ya., Noda M. et al. NAD+ metabolism and ADPPribosyl cyclase as targets for central nervous system thee rapy. Curr. Med. Chem. 2006; 6: 193–210.
  49. Seifert G., Schilling K., Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nature Reviews. Neuroscience 2006; 7: 194–206.
  50. Schurr A., Miller J.J., Payne R.S. et al. An increase in lactate output by brain tissue serves to meet the energy needs of glutamateeactivated neurons. J. Neurosci. 1999; 19: 34–39.
  51. Schurr A. Lactate, glucose and energy metabolism in the ischemic brain. Int. J. Molecul. Med. 2002; 10: 131–136.
  52. Sonnewald U., Qu H., Ascher M. Pharmacology and toxicology of astrocyteeneuron glutamate transport and cycling J. Pharmacol. Exp. Ther. 2002; 301: 1–6.
  53. Szaflarski J., Burtum D., Silverstein S. Cerebral hypoxiaaischemia stimulates cytokine expression in perinatal rats. Stroke 1995; 26: 1093–1100.
  54. Thoren A.E., Helps S.C., Nilsson M. et al. The metabolism of 14C glucose by neurons and astrocytes in subregions following focal cerebral ischemia in rats. J. Neurochem. 2006; 97: 968–978.
  55. Vanucci R.C., Brucklacher R.M., Vanucci S.J. Intracellular calcium accumulation during the evolution of hypoxiccischemic brain damage in the immature rat. Dev. Brain Res. 2001; 126: 117–120.
  56. Vannucci S.J., Hagberg H. Hypoxia–ischemia in the immature brain. J. Experiment. Biol. 2004; 207: 3149–3154.
  57. Vanucci R.C., Vowfighi J., Vanucci S.J. Secondary energy failure after cerebral hypoxiaaischemia in the immature rat. J. Cereb. Blood. Flow Metab. 2004; 24: 1090–1097.
  58. Verkhratsky A. NMDA receptors in glia. Neuroscientist 2007; 13: 28–37.
  59. Wagner B.P., Nedelcu J., Martin E. Delayed postischemic hypothermia improves longgterm behavioral outcome after cerebral hypoxiaischemia in neonatal rats. Pediatr. Res. 2002; 51: 354–360.
  60. Winship I.R., Plaa N., Murphy T.H. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J. Neurosci. 2007; 27: 6268–6272.
  61. Xiang Z., Yuan M., Hassen G.W. et al. Lactate induced excitotoxiciity in hippocampal slice cultures. Exp. Neurol. 2004; 186: 70–77.
  62. Yu A.C., Lee Y.L., Fu W.Y. et al. Gene expression in astrocytes during and after ischemia. Prog. Brain Res. 1995; 105: 245–253.
  63. Zipursky A., Jonston M.V., Trescher W.H. et al. Neurobiology of hypoxiccischemic injury in the developing brain. The developing nervous system: a series of review. Pediatr. Res. 2001; 49: 735–741.
  64. Zonta M., Angulo M.C., Gobbo S. et al. Nat. Neurosci. 2003; 6:43–50.
  65. Zovein A., FlowerssZiegler J., Thamotharan S. et al. Postnatal hypooxiccischemia brain injury alters mechanisms mediating neuronal glucose transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004; 286:
  66. R273–R282.

Statistics

Views

Abstract: 1067

PDF (Russian): 792

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2017 Salmina A.B., Okuneva S.O., Taranushenko T.E., Fursov A.A., Prokopenko S.V., Mikhutkina S.V., Malinovskaya N.A., Tagaeva G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies