Brain plasticity and modern rehabilitation technologies

Cover Page

Abstract

Discussed are basic achievements in the studies of neuronal plasticity with the use of modern neuroimaging methods and, first of all, functional MRI. The role of various afferent inputs in these processes is emphasized. Novel neurorehabilitation technologies such as constraintinduced therapy (CI therapy), “LOCOMAT” system, the robotic therapy etc., are considered as the source of intensive goaldirected afferentation. Data concerning the possibility of the use of neuromuscular electrostimulation at the first hours after ischemic stroke are presented. The unique methods of intrapharyngeal electrostimulation in the treatment of dysphagia of different etiologies are discussed. Efficiency of transcranial electrostimulation in central poststroke pain syndrome is described. Data on possibilities of the EMG feedback in training of the precision grip, one of the basic motor hand skills, are presented. The details of learning of different postural tasks using postural sway feedback in patients with poststroke hemiparesis, Parkinson’s disease and spinocerebellar ataxias are discussed. Data on efficiency of alphastimulating training in patients with central poststroke pain syndrome and with clinical prevalence of affective disturbances are presented. Finally, prospects of one of the most interesting novel rehabilitation technologies, the technology based on virtual reality, are discussed.

About the authors

L. A. Chernikova

Research Center of Neurology

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

References

  1. Гусарова М.В., Черникова Л.А., Ланская Л.Д., Иоффе М.Е. Применение метода биоуправления с обратной связью по электромиограмме при тренировке точностного схвата у больных с постинсультными гемипарезами. В кн.: Медицинская реабилитация пациентов с заболеваниями и повреждениями опорно двигательной и нервной систем. М., 2004: 367–369.
  2. Ланская Л.Д., Сашина М.Б., Гусарова М.В., Черникова Л.А. Эффекты альфа стимулирующего биоуправления у больных с центральной постинсультной болью. В кн.: Медицинская реабилитация пациентов с заболеваниями и повреждениями опорно двигательной и нервной систем. М., 2004: 383–385.
  3. Лебедев В.П. Транскраниальная электростимуляция: новый подход (экспериментальноAклиническое обоснование и аппаратура). В кн.: Лебедев В.П. (ред.). Транскраниальная электростимуляция. Экспериментально-клинические исследования. Сборник статей. С.Пб., 2001: 22–38.
  4. Майорникова С.А., Козырева О.В., Черникова Л.А. Особенности комплексной методики восстановления функции ходьбы у больных с постинсультными гемипарезами. Леч. физкульт. и массаж 2006; 8: 3–6.
  5. Сашина М.Б., Черникова Л.А., Кадыков А.С. Постинсультные болевые синдромы. Атмосфера. Нервные болезни 2004; 3: 25–27.
  6. Умарова Р.М., Черникова Л.А., Танашян М.М., Кротенкова М.В. НервноAмышечная электростимуляция в острейший период ишемического инсульта. Вопр. курортологии, физиотер. и леч. физкультуры 2005; 4: 6–8.
  7. Устинова К.И., Черникова Л.А., Иоффе М.Е., Слива С.С. Нарушения обучения произвольному контролю позы при корковых поражениях различной локализации: к вопросу о корковых механизмах регуляции позы. Журн. высшей нервной деятельности 2000; 3: 421–433.
  8. Черникова Л.А., Устинова К.И., Иоффе М.Е. и др. Биоуправление по стабилограмме в клинике нервных болезней. Бюллетень СО РАМН 2004; июль-сентябрь: 85–91.
  9. Черникова Л.А., Шарыпова Т.Н., Разинкина Т.П., Торопова Н.Г. Влияние нервно мышечной электростимуляции на мышечный кровоток у больных с постинсультными гемипарезами. Физиотерапия, бальнеология и реабилитация 2003; 3: 23–26.
  10. Шестакова М. В., Ланская Л. Д., Билименко А. Е. и др. Обучение произвольному контролю ЭМГ со зрительной обратной связью в норме и у больных с постинсультными гемипарезами: роль зрительной и проприоцептивной афферентации. В сб.: Мат–лы международного симпозиума «Механизмы адаптивного поведения», посвященного 80летию организации Института физиологии им. И.П. Павлова РАН. М., 2005: 6.
  11. Asanuma H, Mackel R. Direct and indirect sensory input pathways to the motor cortex; its structure and function in relation to learning of motor skills. Jpn. J. Physiol. 1989; 39: 1–19.
  12. Barbeau H., Visintin M. Optimal outcomes obtained with body weight support combined with treadmill training in stroke subjects. Arch. Phys. Med. Rehabil. 2003; 84: 1458–1465.
  13. Beer R.F., Dewald J.P., Dawson M.L., Rymer W.Z. Target dependent differences between free and constrained arm movements in chronic hemiparesis. Exp. Brain Res. 2004; 156: 458–470.
  14. Bennett E.L., Diamond M.C., Krech D., Rosenzweig M.R. Chemical and anatomical plasticity of brain. Science 1964; 146: 610–619.
  15. Bracewell R.M. Stroke: neuroplasticity and recent approaches to rehabilitation. J. Neurol. Neurosurg. Psychiatry 2003; 74: 1465–1470.
  16. Carr J.H., Shepherd R.B. Motor relearning programme for stroke. Rockville: Aspen Publications, 1983.
  17. Сhernikova L., Avdjunina I., Savizkaya N. et al. Effectiveness of interpharyngeal electrostimulation in patients with poststroke dyspha- gia. Neurologie & Rehabilitation. 2004; 4: 46.
  18. Chouinard P.A., Leonard G., Paus T. Changes in effective connectivity of the primary motor cortex in stroke patients after rehabilitative therapy. Exp. Neurol. 2006; 201: 375–387.
  19. Colombo G., Hostettler P. Der Lokomateine angetriebene GehAOrthese. Med. Orth. Tech. 2000; 120: 178–181.
  20. Dancause N., Barbay S., Frost S.B. et al. Extensive cortical rewiring after brain injury. J. Neurosci. 2005; 25: 10167–10179.
  21. Deiber M.P., Ibanez V., Honda M. et al. Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage 1998; 7: 73–85.
  22. Elbert T., Pantev C., Wienbruch C. et al. Increased cortical representation of the fingers of the left hand in string players. Science 1995; 270: 305–307.
  23. Fujito Y., Watanabe S., Kobayashi H., Tsukahara N. Promotion of sprouting and synaptogenesis of cerebrofugal fibers by ganglioside application in the red nucleus. Neurosci. Res. 1985; 2: 407–411.
  24. Goerres G.W., Samuel M., Jenkins, I.H., Brooks, D.J. Cerebral control of unimanual and bimanual movements: a PET study. Neuroreport 1998; 9: 3631–3638.
  25. Hardt J.V., Kamiya J. Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science 1978; 201: 79–81.
  26. Hebb D.O. The effects of early experience on problem solving at maturity. Am. Psychol. 1947; 2: 737–745
  27. Hesse S., Konrad M., Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. Arch. Phys. Med. Rehabil. 1999; 80: 421–427.
  28. Hogan N., Krebs H.I., Rohrer B. et al. Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J. Rehabil. Res. Dev. 2006; 43: 605–618.
  29. Holloway R.L. Dendritic branching: some preliminary results of training and complexity in rat visual cortex. Brain Res. 1966; 2: 393–396.
  30. Honda M., Deiber M.P., Ibanez V. et al. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain 1998; 121: 2159–2173.
  31. Ioffe M.E., Ustinova K.I., Chernikova L.A., Kulikov M.A. Supervised learning of postural tasks in patients with poststroke hemiparesis, Parkinson’s disease or cerebellar ataxia. Exp. Brain Res. 2006; 168: 384–394.
  32. Jenkins W.M., Merzenich M.M. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Progr. Brain Res. 1987; 71: 249–266.
  33. Keller A., Arissian K., Asanuma H. Formation of new synapses in the cat motor cortex following lesions of the deep cerebellar nuclei. Exp. Brain Res. 1990; 80: 23–33.
  34. Kopp B., Kunkel A., Muhlnickel W. et al. Plasticity in the motor system related to therapyAinduced improvement of movement after stroke. Neuroreport 1999; 10: 807–810.
  35. Liepert J. Motor cortex excitability in stroke before and after constraintAinduced movement therapy. Cogn. Behav. Neurol. 2006; 19: 41–47.
  36. Mauritz K.H. Gait training in hemiparetic stroke patients. Eura Medicophys. 2004; 40: 165–178.
  37. Merians A.S., Jack D., Boian R. et al. Virtual reality augmented rehabilitation for patients following stroke. Phys. Ther. 2002; 82: 898–915.
  38. Merzenich M.M., Kaas J.H., Wall J.T. et al. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys fol- lowing restricted deafferentation. Neuroscience 1983; 8: 33–55.
  39. Merzenich M.M., Nelson R.J., Stryker M.P. et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol. 1984; 224: 591–605.
  40. Mier H., Tempel L.W., Perlmutter J.S. et al. Changes in brain activity during motor learning measured with PET: effects of hand of perfor- mance and practice. J. Neurophysiol. 1998; 80: 2177–2199.
  41. Miyai I., Suzuki T., Kang J. et al. Middle cerebral artery stroke that includes the premotor cortex reduces mobility outcome. Stroke 1999; 30: 1380–1383.
  42. Miyai I., Yagura H., Oda I. et al. Premotor cortex is involved in restoration of gait in stroke. Ann. Neurol. 2002; 52: 188–194.
  43. Mori A., Waters R.S., Asanuma H. Physiological properties and patterns of projection in the cortico-cortical connections from the second somatosensory cortex to the motor cortex, area 4 gamma, in the cat. Brain Res. 1989; 504: 206–210.
  44. Mulholland T. Human EEG, behavioral stillness and biofeedback. Int. J. Psychophysiol. 1995; 19(3): 263–279.
  45. Nudo R.J., Milliken G.W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol. 1996; 75: 2144–2149.
  46. Pascual-Leone A., Torres F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 1993; 116: 39–52.
  47. Pascual-Leone A., Grafman J., Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowl- edge. Science 1994; 263: 1287–1289.
  48. Peurala S.H., Pitkanen K., Sivenius J., Tarkka I.M. How much exercise does the enhanced gaitAoriented physiotherapy provide for chronic stroke patients? J. Neurol. 2004; 251: 449–453.
  49. Platz T. ImpairmentAoriented training (IOT)–scientific concept and evidenceAbased treatment strategies. Restor. Neurol. Neurosci. 2004; 22: 301–315.
  50. Ro T., Noser E., Boake C. et al. Functional reorganization and recovery after constraintAinduced movement therapy in subacute stroke: case reports. Neurocase 2006; 12: 50–60.
  51. Rosenzweig M.R. Environmental complexity, cerebral change, and behavior. Am. Psychol. 1966; 21: 321–332.
  52. Seitz R.J., Azari N.P. Cerebral reorganization in man after acquired lesions. Adv. Neurol. 1999; 81: 37–47.
  53. Seitz R.J., Canavan A.G., Yaguez L. et al. Successive roles of the cerebellum and premotor cortices in trajectorial learning. Neuroreport 1994; 5: 2541–2544.
  54. Selivanov V., Chernikova L.A., Avdyunina I. et al. Intrapharyngeal electrostimulation in patients with postAstroke dysphagia. Neurology 2005; 64 (Suppl. 1): A110.
  55. Shestakova M., Lanskaya L., Chernikova L., Ioffe M. Voluntary control of EMG with or without visual feedback in healthy subjects and patients with poststroke hemiparesis. Gait & Posture 2005; 21 (Suppl. 1): S111.
  56. ShumwayтCook A., Woollacott M.H. Motor control. Theory and practical applications. Williams & Wilkins, 1995.
  57. Taub E., Miller N.E., Novack T.A. et al. Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehab.1993; 74: 347–354.
  58. Umarova R.U., Tanashayn M.M., Chernikova L.A., Krotenkova M.V. The intensity of the afferent input is the main factor for the benefit of the rehabilitation in acute stroke patients. Neurorehabilitation & Neural Repair 2006; 20: 97.
  59. Volpe B.T., Ferraro M., Lynch D. et al. Robotics and other devices in the treatment of patients recovering from stroke. Curr. Neurol. Neurosci. Rep. 2005; 5: 465–470.
  60. Woolf C.J., Salter M.W. Neuronal plasticity: Increasing the gain in pain. Science 2000; 288: 1765–1768.
  61. You S.H., Jang S.H., Kim Y.H. et al. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke. Stroke 2005; 36: 1166–1178.

Statistics

Views

Abstract: 1075

PDF (Russian): 802

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2007 Chernikova L.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies