Multiple sclerosis: modern conception of pathogenesis and treatment

Cover Page

Cite item

Full Text


The current conception is that multiple sclerosis pathogenesis comprises an initial inflammatory phase, followed by a phase of demyelination and, last, a neurodegenerative phase. The mechh anisms of inflammatory reactions and axonal loss have been disscussed. The crucial role of the immune system in disease pathogenesis has important therapeutic implications. The immunological effects of glucocorticosteroids underlie the beneficial effect on multiple sclerosis relapse. Two classes of immunomodulators (interferon β, glatiramer acetate) are approved for long term treatment of multiple sclerosis. Immunosuppressive agents and immunoglobulins used in treatment have been shown to exert immunomodulatory effects. Future developments of multiple sclerosis therapy have been discussed.

About the authors

I. A. Zavalishin

Research Center of Neurology

Russian Federation, Moscow

A. V. Peresedova

Research Center of Neurology

Author for correspondence.
Russian Federation, Moscow


  1. Бархатова В.П., Завалишин И.А., Хайдаров Б.Т. Нейротрансмиттеры в механизмах связи между нервной и иммунной системами при рассеянном склерозе. Журн. невролог. и психиатрии им. С.С.Корсакова 1998; 11: 51–54.
  2. Гусев Е.И., Демина Т.Л., Бойко А.Н. Рассеянный склероз. М.: Нефть и газ, 1997. 463 с.
  3. Завалишин И.А., Захарова М.Н. Рассеянный склероз: основные аспекты патогенеза. В кн.: Гусев Е.И., Завалишин И.А., Бойко А.Н. (ред.) Рассеянный склероз и другие демиелинизирующие заболевания. М.: Миклош, 2004: 60–74.
  4. Aharoni R., Arnon R., Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J. Neurosci. 2005; 25: 8217–8228.
  5. Aharoni R., Kayhan B., Eilam R. et al. Glatiramer acetate specific T-cells in the brain express T-helper 2/3 cytokines and brain derived neurotrophic factor in situ. Proc. Natl. Acad. Sci. USA. 2003; 100: 14157–14162.
  6. Araque A., Parpura V., Sanzgiri R.P., Haydon P.G. Tripartite synapses: glia, the unacknowledged partner. Trends. Neurosci. 1999; 22: 208–215.
  7. Bielekova B., Goodwin B., Richert N. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83399) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 2000; 6: 1167–1175.
  8. Biernacki K., Antel J.P., Blain M. et al. Interferon beta promotes nerve growth factor secretion early in the course of multiple sclerosis. Arch. Neurol. 2005; 62: 563–568.
  9. Boutros T., Croze E., Yong V.W. Interferon b is a potent promoter of nerve growth factor production by astrocytes. J. Neurochem. 1997; 69: 939–946.
  10. Brown KA. Factors modifying the migration of lymphocytes across the blood brain barrier. Int. Immunopharmacol. 2001; 1: 2043–2062.
  11. Clanet M., Montalban X. (chairmen). The future of multiple sclerosis therapies. PAREXEL MMS Europe Ltd. 2006: 51 p.
  12. Compston A. Mechanisms of axon-glial injury of the optic nerve. Eye 2004; 18: 1182–1187.
  13. Compston A., Coles A. Multiple sclerosis. Lancet 2002; 359: 1221–1231.
  14. Cuzner M.L. Molecular biology of microglia. In: Russel W.C. (ed.) Molecular biology of multiple sclerosis. England: John Wiley & Sons Ltd., 1997: 97–120.
  15. Dong C., Flavell R.A. Cell fate decision: T-helper 1 and 2 subsets in immune responses. Arthritis Res. 2000; 2: 179–188.
  16. Ebers G., Traboulsee A., Li D. et al. Final results from the interferon betaa1b 166year longgterm follow up study. Mult. Scler. 2006; 12, Suppl. 1: S. 189 (P666).
  17. European Study Group on Interferon betaa1b in Secondary Progressive MS. Placeboocontrolled multicenter randomized trial of interferon bb1b in treatment of secondary progressive multiple sclerosis. Lancet 1998; 352: 1491–1497.
  18. Felts P.A. The role of ion channel distribution, dysfunction and gene expression in demyelinating disease. In: Rose M., Griggs R. (eds.) Channelopathies of the nervous system. Bodmin: MPG Books Ltd., 2001: 125–137.
  19. Filippi M., Bozzali M., Rovaris M. et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 2003; 126: 433–437.
  20. Filippi M., Rovaris M., Rocca M.M. et al. European/Canadian Glatiramer Acetate Study Group. Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 2001; 57: 731–733.
  21. Ford C.C., Johnson K.P., Lisak R.P. et al. A prospective open label study of glatiramer acetate: over a decade of continuous use in multiple sclerosis patients. Mult. Scler. 2006; 12: 309–320.
  22. Fossier P., Blanchard B., Ducrocq C. et al. Nitric oxide transforms serotonin into an active form and this affects neuromodulation. Neuroscience 1999; 93: 597–603.
  23. Gold R., Buttgereit F., Toyka K.V. Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J. Neuroimmunol. 2001; 117: 1–8.
  24. Gonsette R.E. Combination therapy for multiple sclerosis. Int. MS J. 2004; 11: 10–21.
  25. Hemmer B., Archelos J.J., Hartung H..P. New concepts in the immunopathogenesis of multiple sclerosis. Nat. Rev. Neurosci. 2002; 3: 291–301.
  26. Hohlfeld R. Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives [Invited review]. Brain 1997; 120: 865–916.
  27. Hohlfeld R., Kerchensteiner M., Stadelmann C. et al. The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J. Neuroimmunol. 2000; 107: 161–166.
  28. Hohlfeld R., Wekerle H. Drug insight: using monoclonal antibodies to treat multiple sclerosis. Nat. Clin. Pract. Neurol. 2005; 1: 34–44.
  29. Jacobs L.D., Cookfair D.L., Rudick R.A. et al. Intramuscular interferon betaa1a for disease progression in exacerbating remitting mulltiple sclerosis. Ann. Neurol. 1996; 39: 285–294.
  30. Johnson K.P., Brooks B.R., Cohen J.A. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing remitting multiple sclerosis: results of a phase III multicenter, double blind, placebo-controlled trial. Neurology 1995; 45: 1268–1276.
  31. Johnson K.P., Calabresi P.A. Interferonnbb1b: prophylactic therapy in multiple sclerosis. In: Cook S.D. (ed.) Handbook of multiple sclerosis. 3d ed. Marcel Dekker Inc., 2001: 503–518.
  32. Kappos L., Traboulsee A., Constantinescu C. et al. Long-term subcutaneous interferon beta-1a therapy in patients with relapsing remitting MS. Neurology 2006; 67: 930–931. 33. Kara P., Freidlander M.J. Dynamic modulation of cerebral cortex synaptic function by nitric oxide. Prog. Brain Res. 1998; 118: 183–198.
  33. Kerschensteiner M., Stadelmann C., Dechant G. et al. Neurotrofic cross talk between the nervous and immune systems: implications for neurological diseases. Ann. Neurol. 2003; 53: 292–304.
  34. Kornek B., Storch M., Bauer J. et al. Distribution of calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 2001; 124: 1114–1124.
  35. Kwak B., Mulhaupt F., Myit S., Mach F. Statins as a newly recognized type of immunomodulator. Nat. Med. 2000; 6: 1399–1402.
  36. Lassmann H., Bruck W., Lucchinett C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol. Med. 2001; 7: 115–121.
  37. LoPachin R., Lehning E. Mechanisms of calcium entry during axon injury and degeneration. Toxicol. Appl. Pharmacol. 1997; 143: 233–244.
  38. Lucchinetti C., Bruck W., Parisi J. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 2000; 47: 707–717.
  39. Miller D.H., Khan O.A., Sheremata W.A. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2003; 348: 15–23.
  40. Morrissey S.P., Le Page E., Edan G. Mitoxantrone in the treatment of multiple sclerosis. Int. MS J. 2005; 12: 74–87.
  41. Neuhaus O., Archelos J.J., Hartung H..P. Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. TRENDS Pharmacol. Sci. 2003; 24: 131–138.
  42. Neuhaus O., Farina C., Wekerle H., Hohlfeld R. Mechanism of action of glatiramer acetate in multiple sclerosis. Neurology 2001; 56: 702–708.
  43. Neuhaus O., Strasser-Fuchs S., Fazekas F. et al. Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology 2002; 59: 990–997.
  44. Neuhaus O., Wiendl H., Kieseier B.C. et al. Multiple sclerosis: mitoxantrone promoted differential effects on immunocompetent cells in vitro. J. Neuroimmunol. 2005; 168: 128–137.
  45. Neumann H., Cavalie A., Jenne D., Wekerle H. Induction of MHC class I genes in neurons. Science 1995; 269: 549–552.
  46. Panitch H. Prophylactic therapy – glatiramer acetate (Copaxone). In: Cook S.D. (ed.) Handbook of multiple sclerosis. 3d ed. Marcel Dekker Inc., 2001: 541–560.
  47. Paz Soldan M.M., Rodriguez M. Heterogeneity of pathogenesis in multiple sclerosis: implications for promotion of remyelination. The Journal of infections diseases 2002; 186, Suppl. 2: S. 248–253.
  48. Perumal J., Filippi M., Ford C. Glatiramer acetate therapy for multiple sclerosis: a review. Expert. Opin. Drug. Metab. Toxicol. 2006; 2: 1019–1029.
  49. Polman C., Barkhof F., Kappos L. et al. Oral interferon betaa1a in relapsing remitting multiple sclerosis: a double blind randomised study. Mult. Scler. 2003; 9: 342–348.
  50. PRISMS Study Group. Randomized double blind placebo-controlled study of interferon bb1a in relapsing/remitting multiple sclerosis. Lancet 1998; 352: 1498–1504.
  51. Rieckmann P., Maurer M. Anti-inflammatory strategies to prevent axonal injury in multiple sclerosis. Curr. Opin. Neurol. 2002; 15: 361–370.
  52. Sawcer S., Maranian M., Setakis E. et al. A whole genome screen for linkage disequilibrium in multiple sclerosis confirms disease associations with regions previously linked to susceptibility. Brain 2002; 125: 1337–1347.
  53. Serono International S.A. The pathophysiology of MS and mode of action of interferon beta. DVDDvideo. 2004.
  54. SPECTRIMS Study Group. Randomized controlled trial of interferon- beta 1a in secondary progressive MS. Clinical results. Neurology 2001; 56: 1496–1504.
  55. Steinman L. Multiple sclerosis: a two stage disease. Natl. Immunol. 2001; 2: 762–764.
  56. The IFNB Multiple Sclerosis Study Group. Interferon beta 1b is effective in relapsing remitting multiple sclerosis: I. Clinical results of a multicentral, randomized double-bind, placebo-controlled trial. Neurology 1993; 43: 655–661.
  57. Trapp B.D., Ransohoff R.M., Fisher E., Rudick R.A. Neurodegeneration in multiple sclerosis: relationship to neurological disability. Neuroscientist 1999; 5: 48–57.
  58. Venken K., Hellings N., Hensen K. et al. Secondary progressive in contrast to relapsing remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory TTcell function and FOXP3 expression. J. Neurosci. Res. 2006; 83: 1432–1446.
  59. Villoslada P., Hauser S.L., Bartke I. et al. Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J. Exp. Med. 2000; 191: 1799–1806.
  60. Wang S., Cheng Q., Malik S., Yang J. Interleukin-1beta inhibits gammaaaminobutyric acid type A (GABA (A)) receptor current in cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 2000; 292: 497–504.
  61. Weitz Schmidt G., Welzenbach K., Brinkmann V. et al. Statins selectively inhibit leukocyte function antigen 1 by binding to a novel regulatory integrin site. Nat. Med. 2001; 7: 687–692.
  62. Wiles C.M., Brown P., Chapel H. et al. Intravenous immunoglobulin in neurological disease: a specialist review. J. Neurol. Neurosurg. Psychiatry 2002; 72: 440–448.
  63. Yong V.W. Differential mechanisms of action of interferonnb and glatiramer acetate in MS. Neurology 2002; 59: 802–808.
  64. Yong V.W., Chabot S., Stuve O., Williams G. Interferon beta in the treatment of multiple sclerosis: mechanisms of action. Neurology 1998; 51: 682–689.
  65. Ziemssen T., Kumpfel T., Klinkert W.E. et al. Glatiramer acetatee specific T-helper 11 and 22 type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain derived neurotrophic factor. Brain 2002; 125: 2381–2391.

Supplementary files

Supplementary Files

Copyright (c) 2007 Zavalishin I.A., Peresedova А.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies