Videonystagmography in the diagnosis of oculomotor disorders

Cover Page

Abstract

Videostagmography is a dynamically developing method of objective quantitative eye movement recording in various neurological diseases which has a few advantages over those used previously. The review describes the basics of the method and the most commonly used tests for a number of eye movements. The principles of research into various types of saccades, including pro-saccades, antisaccades, memory-guided saccades and voluntary saccades, as well as other types of eye movements such as smooth pursuit and optokinetic nystagmus, are also covered. Reviewed are parameters which need to be assessed in each case, with possible deviations in these parameters to be recorded during videonystagmography in patients with neurological diseases. Data from previously published studies allowing to anticipate the development of a technique that would enable the presymptomatic and early differential diagnosis of a number of diseases are presented. The review also considers the potential influence of the disease progression, as well as of therapeutic interventions, on the parameters assessed during videonystagmography.

About the authors

Aleksandra I. Belyakova-Bodina

Research Center of Neurology

Author for correspondence.
Email: gne.na.zemle@gmail.com
Russian Federation, Moscow

Ekaterina V. Bril

A.I. Burnazyan Federal Medical and Biophysical Center

Email: gne.na.zemle@gmail.com
Russian Federation, Moscow

Оlga S. Zimnyakova

A.I. Burnazyan Federal Medical and Biophysical Center

Email: gne.na.zemle@gmail.com
Russian Federation, Moscow

Мarina А. Anikina

A.I. Burnazyan Federal Medical and Biophysical Center

Email: gne.na.zemle@gmail.com
Russian Federation, Moscow

Amayak G. Brutyan

Research Center of Neurology

Email: gne.na.zemle@gmail.com
Russian Federation, Moscow

References

  1. Shurupova M.A., Anisimov V.N., Latanov A.V. [Features of eye movement disorders in patients with cerebellar lesions of different localization]. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika I.P. Pavlova. 2016;24(3): 154-63. (In Russ.)
  2. Miles R.D., Zapala D.A. Vestibular Function Measurement Devices. 2015; 1(212): 49-74. PMID: 27516710 doi: 10.1055/s-0034-1396926
  3. Ganança M.M., Caovilla H.H., Ganança F.F. Electronystagmography versus videonystagmography. Brazilian Journal of Otorhinolaryngology. 2010; 76(3): 399-403. doi: 10.1590/S1808-86942010000300021. PMID: 22219058.
  4. Bell B.B., Abel L.A., Li W. et al. Concordance of smooth pursuit and saccadic measures in normal monozygotic twin pairs. Biological psychiatry. 1994; 36(8): 522-526. PMID: 7827215.
  5. Pelisson D., Prablanc C. Kinematics of centrifugal and centripetal saccadic eye movements in man. Vision Research. 1988; 28(1):87-94. doi: 10.1016/S0042-6989(88)80009-9. PMID: 3414002.
  6. Koene A.R., Erkelens C.J. Cause of kinematic differences during centrifugal and centripetal saccades. Vision Research. 2002; 42(14): 1797-1808. doi: 10.1016/S0042-6989(02)00110-4. PMID: 3414002.
  7. Ettinger U., Kumari V., Crawford T.J. et al. Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology. 2003; 40(4): 620-628. PMID: 14570169.
  8. Kubarko К.A. [Neural pathways and mechanisms of control of eye saccades and visually driven motor reactions]. Belorussky meditsinskii zhurnal. 2005; 1(11): 60-63. (In Russ.)
  9. Leigh R.J., Zee D.S. The Neurology of Eye Movements, 5th Edition. New York: Oxford University Press, 2015; 1136 p.
  10. Winograd-Gurvich C., Georgiou-Karistianis N., Fitzgerald P.B. et al. Self-paced saccades and saccades to oddball targets in Parkinson’s disease. Brain Research. 2006; 1106(1): 134-141. doi: 10.1016/j.brainres.2006.05.103. PMID: 16822490.
  11. Golding C.V.P., Danchaivijitr C., Hodgson T.L., et al. Identification of an oculomotor biomarker of preclinical Huntington disease. Neurology. 2006; 67(3): 485-487. doi: 10.1212/01.wnl.0000218215.43328.88. PMID: 16625001.
  12. Barnes G., Grealy M., Collins S. Volitional control of anticipatory ocular smooth pursuit after viewing, but not pursuing, a moving target: evidence for a re-afferent velocity store. Experimental brain research. 1997; 116(3): 445-455. PMID: 9372293.
  13. Steinbach M.J. Eye tracking of self-moved targets: the role of efference. Journal of experimental psychology. 1969; 82(2): 366-376. PMID: 5378050.
  14. Pfaltz C.R., Ildiz F. The optokinetic test: Interaction of the vestibular and optokinetic system in normal subjects and patients with vestibular disorders. Archives of Oto-Rhino-Laryngology. 1982; 234(1): 21-31. doi: 10.1007/BF00453534. PMID: 6979330.
  15. Astr K., Stridh M. Smooth pursuit detection in binocular eye-tracking data with automatic video-based performance evaluation Marcus Nystr o. Journal of Vision. 2017; 16(2016): 1-18. doi: 10.1167/16.15.20.doi. PMID: 28006070.
  16. Valmaggia C., Proudlock F., Gottlob I. Look and stare optokinetic nystagmus in healthy subjects and in patients with no measurable binocularity. A prospective study. Klinische Monatsblatter fur Augenheilkunde. 2005; 222(3): 196-201. doi: 10.1055/s-2005-858013. PMID: 15785979.
  17. Whalen E. D. Effects of instructions on optokinetic nystagmus (OKN). Independent Studies and Capstones. 2014; Paper 681. Program in Audiology and Communication Sciences, Washington University School of Medicine. http://digitalcommons.wustl.edu/pacs_capstones/681
  18. Kashou N.H., Leguire L.E., Roberts C.J. et al. Instruction dependent activation during optokinetic nystagmus (OKN) stimulation: An FMRI study at 3 T. Brain Research. 2010; 1336(1954): 10-21. doi: 10.1016/j.brainres.2010.04.017. PMID: 20403339.
  19. Waddington J., Harris C.M. Human optokinetic nystagmus: A stochastic analysis. Journal of Vision. 2012;12(12):5-5. doi: 10.1167/12.12.5. PMID: 23139161.
  20. Briand K.A., Strallow D., Hening W. et al. Control of voluntary and reflexive saccades in Parkinson’s disease. Experimental Brain Research. 1999; 129(1): 38-48. doi: 10.1007/s002210050934. PMID: 10717796.
  21. Michell A.W., Xu Z., Fritz D. et al. Saccadic latency distributions in Parkinson’s disease and the effects of L-dopa. Experimental brain research. 2006; 174(1): 7-18. doi: 10.1007/s00221-006-0412-z. PMID: 16544135.
  22. Hood A.J., Amador S.C., Cain A.E. et al. Levodopa slows prosaccades and improves antisaccades: an eye movement study in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007; 78(6): 565-570. doi: 10.1136/jnnp.2006.099754 PMID: 17178817.
  23. Temel Y., Visser-Vandewalle V., Carpenter R.H.S. Saccadometry: a novel clinical tool for quantification of the motor effects of subthalamic nucleus stimulation in Parkinson’s disease. Experimental neurology. 2009; 216(2): 481-489. doi: 10.1016/j.expneurol.2009.01.007. PMID: 19320006.
  24. Nilsson M.H., Patel M., Rehncrona S., et al. Subthalamic deep brain stimulation improves smooth pursuit and saccade performance in patients with Parkinson’s disease. Journal of neuroengineering and rehabilitation. 2013;10(1): 33. doi: 10.1186/1743-0003-10-33. PMID: 23551890.
  25. Antoniades C.A., Bogacz R., Kennard C., et al. Deep Brain Stimulation Abolishes Slowing of Reactions to Unlikely Stimuli. Journal of Neuroscience. 2014; 34(33): 10844-10852. doi: 10.1523/JNEUROSCI.1065-14.2014. PMID: 25122887.
  26. Nemanich S.T., Earhart G.M. Freezing of gait is associated with increased saccade latency and variability in Parkinson’s disease. Clinical Neurophysiology. 2016; 127(6): 2394-2401. doi: 10.1016/j.clinph.2016.03.017. PMID: 27178858.
  27. Stuart S., Lord S., Hill E., Rochester L. Gait in Parkinson’s disease: A visuo-cognitive challenge. Neuroscience & Biobehavioral Reviews. 2016; 62: 76-88. doi: 10.1016/j.neubiorev.2016.01.002. PMID: 26773722
  28. Ewenczyk C., Mesmoudi S., Gallea C., et al. Antisaccades in Parkinson disease: A new marker of postural control? Neurology. 2017; 88(9): 853-861. doi: 10.1212/WNL.0000000000003658. PMID: 28130466
  29. Gitchel G.T., Wetzel P.A., Baron M.S. Pervasive Ocular Tremor in Patients With Parkinson Disease. Archives of Neurology. 2012; 69(8): 1011-7. doi: 10.1001/archneurol.2012.70. PMID: 22490323.
  30. Leigh R.J., Martinez-Conde S. Tremor of the eyes, or of the head, in Parkinson’s disease? Movement Disorders. 2013; 28(6): 691-693. doi: 10.1002/mds.25478. PMID: 23629728.
  31. MacAskill M.R., Myall D.J., Anderson T.J. “Ocular tremor” in Parkinson’s disease: A technology-dependent artifact of universal head motion? Movement Disorders. 2013; 28(8): 1165-1166. doi: 10.1002/mds.25602. PMID: 23813923.
  32. Otero-Millan J., Schneider R., Leigh R.J. et al. Saccades during Attempted Fixation in Parkinsonian Disorders and Recessive Ataxia: From Microsaccades to Square-Wave Jerks. PLoS ONE. 2013;8(3): e58535 . doi: 10.1371/journal.pone.0058535. PMID: 23516502.
  33. Garbutt S., Riley D.E., Kumar A.N. et al. Abnormalities of optokinetic nystagmus in progressive supranuclear palsy. Journal of neurology, neurosurgery, and psychiatry. 2004; 75(10): 1386-1394. doi: 10.1136/jnnp.2003.027367. PMID: 15377682.
  34. Pinkhardt E.H., Jürgens R., Becker W., et al. Differential diagnostic value of eye movement recording in PSP-parkinsonism, Richardson’s syndrome, and idiopathic Parkinson’s disease. Journal of neurology. 2008; 255(12): 1916-1925. doi: 10.1007/s00415-009-0027-y. PMID: 19224319.
  35. Termsarasab P., Thammongkolchai T., Rucker J.C., Frucht S.J. The diagnostic value of saccades in movement disorder patients: a practical guide and review. Journal of Clinical Movement Disorders. 2015; 2(1): 14. doi: 10.1186/s40734-015-0025-4. PMID: 26788350.
  36. Anderson T., Luxon L., Quinn N. et al. Oculomotor function in multiple system atrophy: Clinical and laboratory features in 30 patients. Movement Disorders. 2008; 23(7): 977-984. doi: 10.1002/mds.21999. PMID: 18383533.
  37. Mosimann U.P., Müri R.M., Burn D.J. et al. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain. 2005; 128(6): 1267-1276. doi: 10.1093/brain/awh484. PMID: 15774501.
  38. Kapoula Z., Yang Q., Vernet M. et al. Spread deficits in initiation, speed and accuracy of horizontal and vertical automatic saccades in dementia with Lewy bodies. Frontiers in Neurology. 2010; NOV(November): 1-10. doi: 10.3389/fneur.2010.00138. PMID: 21212841.
  39. Anderson T.J., MacAskill M.R. Eye movements in patients with neurodegenerative disorders. Nature reviews Neurology. 2013; 9(2): 74-85. doi: 10.1038/nrneurol.2012.273. PMID: 23338283.
  40. Burrell J.R., Hornberger M., Carpenter R.H.S. et al. Saccadic abnormalities in frontotemporal dementia. Neurology. 2012; 78(23): 1816-1823. doi: 10.1212/WNL.0b013e318258f75c. PMID: 22573637.
  41. Boxer A.L., Garbutt S., Seeley W.W. et al. Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Archives of neurology. 2012; 69(4): 509-517. doi: 10.1001/archneurol.2011.1021. PMID: 22491196.
  42. Garbutt S., Matlin A., Hellmuth J. et al. Oculomotor function in frontotemporal lobar degeneration, related disorders and Alzheimer’s disease. Brain : a journal of neurology. 2008; 131(Pt 5): 1268-1281. doi: 10.1093/brain/awn047. PMID: 18362099.
  43. Kapoula Z., Yang Q., Otero-Millan J. et al. Distinctive features of microsaccades in Alzheimer’s disease and in mild cognitive impairment. Age. 2014; 36(2): 535-543. doi: 10.1007/s11357-013-9582-3. PMID: 24037325.
  44. Lasker A.G., Zee D.S., Hain T.C. et al. Saccades in Huntington’s disease: initiation defects and distractibility. Neurology. 1987; 37(3): 364-370. PMID: 2950337.
  45. Peltsch A., Hoffman A., Armstrong I. et al. Saccadic impairments in Huntington’s disease. Experimental Brain Research. 2008; 186(3): 457-469. doi: 10.1007/s00221-007-1248-x. PMID: 18185924.
  46. Grabska N., Rudzińska M., Wójcik-Pędziwiatr M. et al. Saccadic eye movements in juvenile variant of Huntington disease. Neurologia i neurochirurgia polska. 2014; 48(4): 236-241. doi: 10.1016/j.pjnns.2014.06.003. PMID: 25168321.
  47. Rupp J., Blekher T., Jackson J. et al. Progression in prediagnostic Huntington disease. Journal of neurology, neurosurgery, and psychiatry. 2010; 81(4): 379-384. doi: 10.1136/jnnp.2009.176982. PMID: 19726414.
  48. Clark D., Eggenberger E. Neuro-ophthalmology of movement disorders. Current opinion in ophthalmology. 2012; 23(6): 491-496. doi: 10.1097/ICU.0b013e328358ba14. PMID: 23014265.
  49. Ingster-Moati I., Bui Quoc E., Pless M. et al. Ocular motility and Wilson’s disease: a study on 34 patients. Journal of neurology, neurosurgery, and psychiatry. 2007; 78(11): 1199-1201. doi: 10.1136/jnnp.2006.108415. PMID: 17470473.
  50. Jung H.-K., Choi S.Y., Kim J.-M., Kim J.-S. Selective slowing of downward saccades in Wilson’s disease. Parkinsonism & related disorders. 2013; 19(1): 134-135. doi: 10.1016/j.parkreldis.2012.05.023. PMID: 22721972.
  51. Abel L.A., Walterfang M., Fietz M. et al. Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits. Neurology. 2009; 72(12): 1083-1086. doi: 10.1212/01.wnl.0000345040.01917.9d. PMID: 19307542.
  52. Zee D.S., Yee R.D., Cogan D.G. et al. Ocular motor abnormalities in hereditary cerebellar ataxia. Brain. 1976; 99(2): 207-234. doi: 10.1093/brain/99.2.207. PMID: 990897.
  53. Moscovich M., Okun M.S., Favilla C. et al. Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society. 2015; 35(1): 16-21. doi: 10.1097/WNO.0000000000000167. PMID: 25259863.
  54. Rodríguez-Labrada R., Velázquez-Pérez L. Eye Movement Abnormalities in Spinocerebellar Ataxias. 2012. Spinocerebellar Ataxia, Dr. José Gazulla (Ed.), ISBN: 978-953-51-0542-8, InTech, Available from: http://www.intechopen.com/books/spinocerebellar-ataxia/eye-movement-abnormalities-in- spinocerebellar-ataxias

Statistics

Views

Abstract: 1895

PDF (Russian): 1943

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2017 Belyakova-Bodina A.I., Bril' Е.V., Zimnyakova О.S., Anikina М.А., Brutyan A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies