Carnosine restores the activation of signaling cascades and the ratio of apoptosis-regulating proteins in the penumbra zone after a permanent focal cerebral ischemia in rats

Cover Page


Cite item

Full Text

Abstract

Abstract

Introduction. Ischemic stroke is one of the most common and socially significant diseases, and its pathogenesis is associated with oxidative stress. The study of mechanisms of the neuroprotective action of the natural antioxidant carnosine is promising in the context of carnosine-based drug development.

Objective. To study the effect of carnosine on the level of apoptosis-regulating proteins of the Bcl-2 family and the level of activation of protein kinase B (Akt) and MAP kinases ERK1/2, p38 and JNK in the rat brain after a 24-hour permanent focal cerebral ischemia.

Materials and methods. In the model of permanent focal cerebral ischemia caused by the occlusion of the middle cerebral artery in Wistar rats, we assessed, using Western blotting, the level of expression of Bcl-2 family proteins and the phosphorylation of Akt, ERK1/2, p38 and JNK in the penumbra zone of the cortex in the ischemic hemisphere and in the symmetrical region of the contralateral hemisphere, as well as in similar areas of the brain of intact animals. Carnosine was administered to animals intraperitoneally at doses of 50 mg/kg and 500 mg/kg of body weight in the postischemic period.

Results. In permanent focal cerebral ischemia in rats, the amount of Bax and, to a lesser extent, of Bcl-2 increased in the penumbra zone shifting the Bcl-2/Bax ratio towards the pro-apoptotic signal; a decreased Akt activation and an increased ERK1/2 activation was observed. The administration of carnosine rescued the activation of Akt and the Bcl-2/Bax ratio but did not affect an increased activation of ERK1/2. No significant changes in the level of Bak, Bcl-xL and Bcl-w, and no activation of p38 and JNK were observed in the penumbra zone.

About the authors

Olga M. Lopacheva

Research Center of Neurology

Author for correspondence.
Email: olga3511@yandex.ru
Russian Federation, Moscow

Alexander V. Lopachev

Research Center of Neurology

Email: olga3511@yandex.ru
Russian Federation, Moscow

Kseniya N. Kulichenkova

Research Center of Neurology

Email: olga3511@yandex.ru
Russian Federation, Moscow

Alexander A. Devyatov

Research Center of Neurology

Email: olga3511@yandex.ru
Russian Federation, Moscow

Daniil S. Berezhnoy

Research Center of Neurology

Email: olga3511@yandex.ru
Russian Federation, Moscow

Sergey L. Stvolinsky

Research Center of Neurology

Email: olga3511@yandex.ru
Russian Federation, Moscow

Olga I. Kulikova

Research Center of Neurology

Email: olga3511@yandex.ru
Russian Federation, Moscow

Svetlana A. Gavrilova

Lomonosov Moscow State University

Email: olga3511@yandex.ru
Russian Federation, Moscow

Mariya P. Morozova

Lomonosov Moscow State University

Email: olga3511@yandex.ru
Russian Federation, Moscow

Tatiana N. Fedorova

Research Center of Neurology

Email: olga3511@yandex.ru
Russian Federation, Moscow

References

  1. Piradov M.A., Tanashyan M.M., Domashenko M.A. et al. [Neuroprotection in cerebrovascular diseases: is it the search for life on Mars or a promising trend of treatment? Part 1. Acute stroke]. Annals of clinical and experimental neurology 2015; 9(1): 41–50. (in Russ.)
  2. Green D.R., Reed J.C. Mitochondria and apoptosis. Science 1998; 281(5381): 1309–1312. PMID: 9721092.
  3. Niizuma K., Endo H., Chan P.H. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 2009; 109 Suppl 1: 133–138. doi: 10.1111/j.1471-4159.2009.05897.x. PMID: 19393019.
  4. Atlante A., Calissano P., Bobba A. et al. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 2001; 497(1): 1–5. PMID: 11376653.
  5. Babot Z., Cristofol R., Sunol C. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels. Eur J Neurosci 2005; 21(1): 103–112. doi: 10.1111/j.1460-9568.2004.03848.x. PMID: 15654847.
  6. Lu Y.M., Yin H.Z., Chiang J., Weiss J.H. Ca(2+)-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury. J Neurosci 1996; 16(17): 5457–5465. PMID: 8757258.
  7. Parsons M.P., Raymond L.A. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 2014; 82(2): 279–293. doi: 10.1016/j.neuron.2014.03.030. PMID: 24742457.
  8. Rajendran P., Nandakumar N., Rengarajan T. et al. Antioxidants and human diseases. Clin Chim Acta 2014; 436: 332–347. doi: 10.1016/j.cca.2014.06.004. PMID: 24933428.
  9. Boldyrev A.A. Carnosine: new concept for the function of an old molecule. Biochemistry (Mosc) 2012; 77(4): 313–326. doi: 10.1134/S0006297912040013. PMID: 22809149.
  10. Boldyrev A.A., Aldini G., Derave W. Physiology and pathophysiology of carnosine. Physiol Rev 2013; 93(4): 1803–1845. doi: 10.1152/physrev.00039.2012. PMID: 24137022.
  11. Dobrota D., Fedorova T., Stvolinsky S. et al. Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury: after-stroke-effect. Neurochem Res 2005; 30(10): 1283–1288. doi: 10.1007/s11064-005-8799-7. PMID: 16341589.
  12. Boldyrev A.A., Stvolinsky S.L., Fedorova T.N., Suslina Z.A. Carnosine as a natural antioxidant and geroprotector: from molecular mechanisms to clinical trials. Rejuvenation Res 2010; 13(2-3): 156–158. doi: 10.1089/rej.2009.0923. PMID: 20017611.
  13. Park H.S., Han K.H., Shin J.A. et al. The neuroprotective effects of carnosine in early stage of focal ischemia rodent model. J Korean Neurosurg Soc 2014; 55(3): 125–130. doi: 10.3340/jkns.2014.55.3.125. PMID: 24851146.
  14. Bae O.N., Serfozo K., Baek S.H. et al. Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 2013; 44(1): 205–212. doi: 10.1161/STROKEAHA.112.673954. PMID: 23250994.
  15. Fedorova T.N., Gavrilova S.A., Morozova M.P. et al. [The neuroprotective effect of the carnosine in a focal cerebral ischemia]. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii 2017; 20(4): 25–31. (in Russ.)
  16. Sariev A.K., Abaimov D.A., Tankevich M.V. et al. [Experimental study of the basic pharmacokinetic characteristics of dipeptide carnosine and its efficiency of penetration into brain tissues]. Eksp Klin Farmakol 2015; 78(3): 30–35. PMID: 26036009. (in Russ.)
  17. Lopachev A.V., Lopacheva O.M., Abaimov D.A. et al. Neuroprotective Effect of Carnosine on Primary Culture of Rat Cerebellar Cells under Oxidative Stress. Biochemistry (Mosc) 2016; 81(5): 511–520. doi: 10.1134/S0006297916050084. PMID: 27297901.
  18. Graham S.H., Chen J., Clark R.S. Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. J Neurotrauma 2000; 17(10): 831–841. doi: 10.1089/neu.2000.17.831. PMID: 11063051.
  19. Broughton B.R., Reutens D.C., Sobey C.G. Apoptotic mechanisms after cerebral ischemia. Stroke 2009; 40(5): e331–339. doi: 10.1161/STROKEAHA.108.531632. PMID: 19182083.
  20. Ferrer I., Planas A.M. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 2003; 62(4): 329–339. PMID: 12722825.
  21. Zhang L.M., Zhao X.C., Sun W.B. et al. Sevoflurane post-conditioning protects primary rat cortical neurons against oxygen-glucose deprivation/resuscitation via down-regulation in mitochondrial apoptosis axis of Bid, Bim, Puma-Bax and Bak mediated by Erk1/2. J Neurol Sci 2015; 357(1-2): 80–87. doi: 10.1016/j.jns.2015.06.070. PMID: 26152828.
  22. Lu Q., Wang J., Jiang J. et al. rLj-RGD3, a Novel Recombinant Toxin Protein from Lampetra japonica, Protects against Cerebral Reperfusion Injury Following Middle Cerebral Artery Occlusion Involving the Integrin-PI3K/Akt Pathway in Rats. PLoS One 2016; 11(10): e0165093. doi: 10.1371/journal.pone.0165093. PMID: 27768719.
  23. Cheng C.Y., Tang N.Y., Kao S.T., Hsieh C.L. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats. PLoS One 2016; 11(5): e0155748. doi: 10.1371/journal.pone.0155748. PMID: 27187745.
  24. Bright R., Raval A.P., Dembner J.M. et al. Protein kinase C delta mediates cerebral reperfusion injury in vivo. J Neurosci 2004; 24(31): 6880–6888. doi: 10.1523/JNEUROSCI.4474-03.2004. PMID: 15295022.
  25. Niizuma K., Yoshioka H., Chen H. et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 2010; 1802(1): 92–99. doi: 10.1016/j.bbadis.2009.09.002. PMID: 19751828.
  26. Chen H., Yoshioka H., Kim G.S. et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14(8): 1505–1517. doi: 10.1089/ars.2010.3576. PMID: 20812869.
  27. Karkishchenko N.N., Grachev S.V. (ed.). Rukovodstvo po laboratornym zhivotnym i al'ternativnym modelyam v biomedicinskih tekhnologiyah. [Guide to laboratory animals and alternative models in biomedical technology] Moscow. Profile, 2010. (in Russ.)
  28. Chen S.T., Hsu C.Y., Hogan E.L. et al. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 1986; 17(4): 738–743. PMID: 2943059.
  29. Gavrilova S.A., Samoylenkova N.S., Pirogov Yu.A. et al. [Neuroprotective effect of hypoxic preconditioning in focal ischemia of rat brain]. Patogenez 2008; 6(3): 13–17. (in Russ.)
  30. Wang J.P., Yang Z.T., Liu C. et al. L-carnosine inhibits neuronal cell apoptosis through signal transducer and activator of transcription 3 signaling pathway after acute focal cerebral ischemia. Brain Res 2013; 1507: 125–133. doi: 10.1016/j.brainres.2013.02.032. PMID: 23454231.
  31. Cheng J., Wang F., Yu D.F. et al. The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reactive oxygen species/MAPK pathway in neurons. Eur J Pharmacol 2011; 650(1): 184–194. doi: 10.1016/j.ejphar.2010.09.033. PMID: 20868662.
  32. Minami M., Jin K.L., Li W. et al. Bcl-w expression is increased in brain regions affected by focal cerebral ischemia in the rat. Neurosci Lett 2000; 279(3): 193–195. PMID: 10688062.
  33. Ouyang Y.B., Giffard R.G. Cellular neuroprotective mechanisms in cerebral ischemia: Bcl-2 family proteins and protection of mitochondrial function. Cell Calcium 2004; 36(3–4): 303–311. doi: 10.1016/j.ceca.2004.02.015. PMID: 15261486.
  34. Mattson M.P., Culmsee C., Yu Z.F. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 2000; 301(1): 173–187. PMID: 10928290.
  35. Yaidikar L., Thakur S. Punicalagin attenuated cerebral ischemia-reperfusion insult via inhibition of proinflammatory cytokines, up-regulation of Bcl-2, down-regulation of Bax, and caspase-3. Mol Cell Biochem 2015; 402(1–2): 141–148. doi: 10.1007/s11010-014-2321-y. PMID: 25555468.
  36. Moore J.G., Hibbard L.T., Growdon W.A., Schifrin B.S. Urinary tract endometriosis: enigmas in diagnosis and management. Trans Pac Coast Obstet Gynecol Soc 1979; 46: 61–71. PMID: 542976.
  37. Xie R., Wang P., Ji X., Zhao H. Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats. J Neurochem 2013; 127(5): 723–732. doi: 10.1111/jnc.12342. PMID: 23777415.
  38. Zhu X., Castellani R.J., Takeda A. et al. Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the 'two hit' hypothesis. Mech Ageing Dev 2001; 123(1): 39–46. PMID: 11640950.
  39. Zamora-Martinez E.R., Edwards S. Neuronal extracellular signal-regulated kinase (ERK) activity as marker and mediator of alcohol and opioid dependence. Front Integr Neurosci 2014; 8: 24. doi: 10.3389/fnint.2014.00024. PMID: 24653683.
  40. Ha S., Redmond L. ERK mediates activity dependent neuronal complexity via sustained activity and CREB-mediated signaling. Dev Neurobiol 2008; 68(14): 1565–1579. doi: 10.1002/dneu.20682. PMID: 18837011.
  41. Luo T., Wu W.H., Chen B.S. NMDA receptor signaling: death or survival? Front Biol (Beijing) 2011; 6(6): 468–476. doi: 10.1007/s11515-011-1187-6. PMID: 23144645.
  42. Morrison R.S., Kinoshita Y., Johnson M.D. et al. Neuronal survival and cell death signaling pathways. Adv Exp Med Biol 2002; 513: 41–86. PMID: 12575817.
  43. Cheung E.C., Slack R.S. Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE 2004; 2004(251): PE45. doi: 10.1126/stke.2512004pe45. PMID: 15383672.
  44. Okami N., Narasimhan P., Yoshioka H. et al. Prevention of JNK phosphorylation as a mechanism for rosiglitazone in neuroprotection after transient cerebral ischemia: activation of dual specificity phosphatase. J Cereb Blood Flow Metab 2013; 33(1): 106–114. doi: 10.1038/jcbfm.2012.138. PMID: 23032483.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Lopacheva O.M., Lopachev A.V., Kulichenkova K.N., Devyatov A.A., Berezhnoy D.S., Stvolinsky S.L., Kulikova O.I., Gavrilova S.A., Morozova M.P., Fedorova T.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies