Multimodal studies of the human brain using functional magnetic resonance imaging and magnetic resonance spectroscopy

Cover Page

Abstract

Abstract

Studying the brain structure and function in health and disease is one of the most important and intensively developing fields of neuroscience in the new century. Nowdays, in vivo studies of brain structure, metabolism, blood flow and function are mostly performed using safe imaging technologies not requiring ionizing radiation and based on magnetic resonance imaging (MRI). In this review, the detailed description of the principles of commonly used techniques that provide high-quality information about the brain, such as functional MRI (fMRI) and magnetic resonance spectroscopy (MRS), is presented. The potential and advantages of these methods including their use in combination with other imaging techniques (MR-tractography etc.) are outlined. The authors believe that combining all MRI options in one study may produce a complex approach for exploring physical-chemical mechanisms underlying brain function which may be of value for basic and applied research.

About the authors

Maksim V. Ublinskiy

Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow

Author for correspondence.
Email: center@test.ru
Russian Federation

A. V. Manzhurtsev

Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow

Email: center@test.ru
Russian Federation

P. E. Men'shchikov

Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow

Email: center@test.ru
Russian Federation

T. A. Akhadov

Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow

Email: center@test.ru
Russian Federation

N. A. Semenova

Research Institute of Emergency Pediatric Surgery and Traumatology, Moscow

Email: center@test.ru
Russian Federation

References

  1. Graham G.D., Kalvach P., Blamire A.M. et al. Clinical correlates of proton magnetic resonance spectroscopy findings after acute cerebral infarction. Stroke 1995; 26: 225–229. PMID: 7831692 doi: 10.1161/01.STR.26.2.225
  2. Pellerin L., Magistretti P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 1994; 91: 10625– 10629. PMID: 7938003 doi: 10.1073/pnas.91.22.10625
  3. Vazquez A.L., Fukuda M., Kim S.G. Evolution of the dynamic changes in functional cerebral oxidative metabolism from tissue mitochondria to blood oxygen. J Cereb Blood Flow Metab 2012; PMID: 22293987 PMCID: PMC3318152 doi: 10.1038/jcbfm.2011.198
  4. Kim H., Jin S.T., Kim Y.W. et al. Risk Factors for Early Hemorrhagic Progression After Traumatic Brain Injury: A Focus on Lipid Profile. Journal of neurotrauma 2015. PMID: 25557755 doi: 10.1089/neu.2014.3697
  5. Magistretti P.J., Pellerin L., Rothman D.L., Shulman R.G. Energy on demand. Science 1999; 283: 496-497.PMID: 9988650
  6. Erin L., Habecker F., Melissa A. et al. FMRI in Psychiatric Disorders. Neuromethods 2009; 41: 615-656.
  7. Ames A. CNS energy metabolism as related to function. Brain Res Brain Res Rev 2004; 34: 42-68. PMID: 11086186
  8. Merboldt K., Hanicke W., Frahm J. Self-diffusion NMR imaging using stimulated echoes. Journal of Magnetic Resonance 1969; 64 (3): 479–486. PMID: 1881309 doi: 10.1016/0022-2364(85)90111-8
  9. Rink P.A. Introduction into Magnetic Resonance in Medicine. Stuttgart – New York: Theme Medical Publishers Inc 1990 - 228 p.
  10. Fox P.T., Raichle M.E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986; 83:1140–1144. PMID: 3485282 PMCID: PMC323027 doi: 10.1073/pnas.83.4.1140
  11. Skripuletz T., Manzel A., Gropengieber et.al. Pivotal role of choline metabolites in remyelination. Brain. 2015; 138: 398-413. PMID: 25524711 doi: 10.1093/brain/awu358
  12. Ogawa S. Lee T.M., Kay A.R., Tank D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990; 87: 9868-9872.
  13. Westin C.F., Maier S.E., Mamata H. et.al. Processing and visualization of diffusion tensor MRI. Medical Image Analysis 2002; 6(2):93-108. PMID: 12044998
  14. Hollian A., Owen C.S., Wilson D.F. Control of Respiration in Isolated Mitochondria: Quantitative Evaluation of the Dependence of Respiratory Rates on [ATP], [ADP], and [Pi].Arch. Biochem. Biophy. 1977; 181: 164.
  15. Diehl P., Fluck E., Gunther H. et.al. NMR. Basic principles and progress. In vivo Magnetic resonance spectroscopy III: In vivo Magnetic resonance spectroscopy III: potential and limitations. Berlin Heidelberg New York: Springer-Verlag 1992; 190: 35
  16. Silva A.C., Lee S.P., Iadecola C., Kim S.G. Early temporal characteristics of CBF and deoxyhemoglobin changes during somatosensory stimulation. J Cereb Blood Flow Metab 2000; 20:201–206. PMID: 10616809 doi: 10.1097/00004647-200001000-00025
  17. Turner R., Le Bihan D., Moonen C.T. et.al. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 1991; 22(1): 159-166. PMID: 1798390 doi: 10.1002/mrm.1910220117
  18. Ross B., Bluml S. Magnetic resonance spectroscopy of the human brain. The Anatomical Record 2001; 265: 54–84.
  19. Baslow M. H. Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Ganavan disease; a mechanistic explanation. J. Mol. Neurosci. 2003; 21: 185 – 190. PMID: 14645985
  20. Baslow M.H. In: Moffet J., Tieman S. (eds.) N-acetylaspartate: a unique neuronal molecule in the central nervous system. New York: Springer Science. 2006: 95 – 113.
  21. De Stephano N., Matthews P.M., Arnold D.L. Reversible decrease in N-acetylaspartate after acute brain injury. Magn. Reson. Med 1995; 34: 721 – 727. PMID: 8544693
  22. Nagaoka T., Zhao F., Wang P. et.al. Increases in oxygen consumption without cerebral blood volume change during visual stimulation under hypotension condition. J Cereb Blood Flow Metab 2006; 26: 1043–1051. PMID: 16395284 doi: 10.1038/sj.jcbfm.9600251
  23. Federico F., Simone I.L., Lucivero V. et.al. Prognostic value of proton magnetic resonance spectroscopy in ischemic stroke. Arch. Neurol 1998; 55: 489–494. PMID: 9561976 doi: 10.1001/archneur.55.4.489
  24. Hahn E.L. Spin echoes. Phys. Rev 1950; 80: 580-594.
  25. Delamillieure P. Constans J.M., Fernandez J. et.al. Proton Magnetic Resonance Spectroscopy (1 H MRS) in Schizophrenia. Schizophrenia bulletin 2002; 28: 329-339.
  26. Baslow M.H. Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochem. Int 2002; 28: 941 – 953. PMID: 11792458 doi: 10.1016/S0197-0186(01)00095-X
  27. Stein P., Vitavska O., Kind P. et.al. The biological basis for poly-l-lactic acid-induced augmentation. J Dermatol Sci 2015; 7: S0923-1811(15)00037-7. PMID: 25703057 doi: 10.1016/j.jdermsci.2015.01.012
  28. Tallan H.H., Moore S., Stein W.H. N-Acetyl-l-Aspartic acid in brain. J. Biol. Chem 1956; 219: 257.
  29. Ljunggren S. A simple graphical presentation of Fourier-based imaging method. Journal of Magnetic Resonance 1983; 54: 338.
  30. Hu X., Yacoub E. The story of the initial dip in fMRI. Neuroimage 2012;62(2): 1103-1108. PMID: 22426348 doi: 10.1016/j.neuroimage.2012.03.005

Statistics

Views

Abstract: 1249

PDF (Russian): 797

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2018 Ublinskiy M.V., Manzhurtsev A.V., Men'shchikov P.E., Akhadov T.A., Semenova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies