Methods of detecting lesions of upper motor neuron in amyotrophic lateral sclerosis using transcranial magnetic stimulation

Abstract

Introduction. Coexistent involvement of upper and lower motor neurons is a characteristic feature of amyotrophyc lateral syndrome (ALS) necessary for the diagnosis. Diagnosis of upper motor neuron involvement in ALS is based solely on clinical features, which may not be detected at the disease onset and in rare forms manifesting clinically as the local lower motor neuron syndrome (LLMNS). The main method of assessment of the functional state of the upper motor neuron in ALS is transcranial magnetic stimulation (TMS). It allows assessing the excitability of motor cortex, corticospinal path function, and mapping of cortical representation of the muscles. In patients with ALS changes of various indicators demonstrating hyperexcitability as well as degenerative lesions of the motor cortex and the corticospinal tracts are recorded on TMS.

Objective: to discuss changes in the TMS in patients with LAS, pathophysiological mechanisms of their formation and possible diagnostic value.

Results. In 22 patients with LLMNS, navigation TMS revealed disturbances of intracortical suppression on paired stimulation with recording period of silence, increase of motor threshold in dominant hemisphere, decrease of the weighted square and reorganization of cortical representations of the hand muscles.

Conclusion. The data obtained allow to consider navigation TMS as a promising technology for identifying upper motor neuron involvement in patients with ALS.

About the authors

Ilya S. Bakulin

Research Center of Neurology

Author for correspondence.
Email: bakulin@neurology.ru
ORCID iD: 0000-0003-0716-3737

Cand. Sci. (Med.), researcher, Department of neurorehabilitation and physiotherapy

Russian Federation, Moscow

Alexandra G. Poydasheva

Research Center of Neurology

Email: bakulin@neurology.ru
ORCID iD: 0000-0003-1841-1177

junior researcher, neurologist, Department of neurorehabilitation and physiotherapy

Russian Federation, Moscow

Andrey Yu. Chernyavsky

Research Center of Neurology

Email: bakulin@neurology.ru
Russian Federation, Moscow

Natalya A. Suponeva

Research Center of Neurology

Email: bakulin@neurology.ru
ORCID iD: 0000-0003-3956-6362

D. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, principal researcher, Department of neurorehabilitation and physiotherapy

Russian Federation, Moscow

Maria N. Zakharova

Research Center of Neurology

Email: bakulin@neurology.ru
Russian Federation, Moscow

Mikhail A. Piradov

Research Center of Neurology

Email: bakulin@neurology.ru
ORCID iD: 0000-0002-6338-0392

D. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Director

Russian Federation, Moscow

References

  1. Zakharova M.N., Brylev L.V., Avdyunina I.A. et al. Amyotrophic lateral sclerosis. In: Gusev E.I., Konovalov A.N., Skvortsova V.I. (eds.) Neurology. National guide. Moscow: GEOTAR-Media; 2018; (1): 644–662. (In Russ.).
  2. Brooks B.R., Miller R.G., Swash M. et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1(5): 293–299. PMID: 11464847.
  3. de Carvalho M., Dengler R., Eisen A. et al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 2008; 119(3): 497–503. doi: 10.1016/j.clinph.2007.09.143. PMID: 18164242.
  4. Swash M. Why are upper motor neuron signs difficult to elicit in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 2012; 83(6): 659–662. doi: 10.1136/jnnp-2012-302315. PMID: 22496581.
  5. Huynh W., Simon N.G., Grosskreutz J. et al. Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol 2016; 127(7): 2643–2660. doi: 10.1016/j.clinph.2016.04.025. PMID: 27291884.
  6. Ince P.G., Evans J., Knopp M. et al. Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology 2003; 60(8): 1252–1258. PMID: 12707426.
  7. Liewluck T, Saperstein D.S. Progressive muscular atrophy. Neurol Clin 2015; 33(4): 761–773. doi: 10.1016/j.ncl.2015.07.005. PMID: 26515620.
  8. Al-Chalabi A., Hardiman O., Kiernan M.C. et al. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 2016; 15(11): 1182–1194. doi: 10.1016/S1474-4422(16)30199-5. PMID: 27647646.
  9. Swinnen B., Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 2014; 10(11): 661–670. doi: 10.1038/nrneurol.2014.184. PMID: 25311585.
  10. Ludolph A., Drory V., Hardiman O. et al. A revision of the El Escorial criteria - 2015. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16(5–6): 291–292. doi: 10.3109/21678421.2015.1049183. PMID: 26121170.
  11. Bakulin I.S., Zakroyschikova I.V., Suponeva N.A., Zakharova M.N. Amyotrophic lateral sclerosis: Clinical heterogeneity and approaches to classification. Neuromuscular Diseases 2017; 7(3): 10–20. doi: 10.17650/2222-8721-2017-7-3-10-20. (In Russ.).
  12. Garg N., Park S.B., Vucic S. et al. Differentiating lower motor neuron syndromes. J Neurol Neurosurg Psychiatry 2017; 88(6): 474–483. doi: 10.1136/jnnp-2016-313526. PMID: 28003344.
  13. Sanderson A.B., Arnold W.D., Elsheikh B., Kissel J.T. The clinical spectrum of isolated peripheral motor dysfunction. Muscle Nerve 2015; 51(3): 358–362. doi: 10.1002/mus.24326. PMID: 25042002.
  14. Wijesekera L.C., Mathers S., Talman P. et al. Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 2009; 72(12): 1087–1094. doi: 10.1212/01.wnl.0000345041.83406.a2. PMID: 19307543.
  15. Hübers A., Hildebrandt V., Petri S. et al. Clinical features and differential diagnosis of flail arm syndrome. J Neurol 2016; 263(2): 390–395. doi: 10.1007/s00415-015-7993-z. PMID: 26705123.
  16. Visser J., van den Berg-Vos R.M., Franssen H. et al. Mimic syndromes in sporadic cases of progressive spinal muscular atrophy. Neurology 2002; 58(11): 1593–1596. PMID: 12058084.
  17. Chiò A., Pagani M., Agosta F. et al. Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 2014; 13(12): 1228–1240. doi: 10.1016/S1474-4422(14)70167-X. PMID: 25453462.
  18. Pradat P.F., El Mendili M.M. Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. Biomed Res Int 2014; 2014: 467560. doi: 10.1155/2014/467560. PMID: 24949452.
  19. Grolez G., Moreau C., Danel-Brunaud V. et al. The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review. BMC Neurol 2016; 16(1): 155. doi: 10.1186/s12883-016-0672-6. PMID: 27567641.
  20. Bakulin I.S., Chervyakov A.V., Kremneva E.I. et al. Structural and functional neuroimaging in amyotrophic lateral sclerosis. Annals of Clinical and Experimental Neurology 2017; 10(2): 72–82. doi: 10.18454/ACEN.2017.2.11. (In Russ.).
  21. Rossini P.M., Burke D., Chen R. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126(6): 1071–1107. doi: 10.1016/j.clinph.2015.02.001. PMID: 25797650.
  22. Di Lazzaro V., Ziemann U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circuits 2013; 7: 18. doi: 10.3389/fncir.2013.00018. PMID: 23407686.
  23. Vucic S., Ziemann U., Eisen A. et al. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry 2013; 84(10): 1161–1170. doi: 10.1136/jnnp-2012-304019. PMID: 23264687.
  24. Vucic S., Kiernan M.C. Transcranial magnetic stimulation for the assessment of neurodegenerative disease. Neurotherapeutics 2017; 14(1): 91–106. doi: 10.1007/s13311-016-0487-6. PMID: 27830492.
  25. Geevasinga N., Menon P., Özdinler P.H. et al. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 2016; 12(11): 651–661. doi: 10.1038/nrneurol.2016.140. PMID: 27658852.
  26. Bakulin I.S., Chervyakov A.V., Suponeva N.A. et al. Motor cortex hyperexcitability, neuroplasticity and degeneration in amyotrophic lateral sclerosis. In: H. Foyaca-Sibat (ed.). Novel aspects of amyotrophic lateral sclerosis. Rijeka: InTech; 2016: 47–72.
  27. Vucic S., Cheah B.C., Kiernan M.C. Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Exp Neurol 2009; 220(1): 177–182. doi: 10.1016/j.expneurol.2009.08.017. PMID: 19716820.
  28. Bae J.S., Simon N.G., Menon P. et al. The puzzling case of hyperexcitability in amyotrophic lateral sclerosis. J Clin Neurol 2013; 9(2): 65–74. doi: 10.3988/jcn.2013.9.2.65. PMID: 23626643.
  29. Do-Ha D., Buskila Y., Ooi L. Impairments in motor neurons, interneurons and astrocytes contribute to hyperexcitability in ALS: underlying mechanisms and paths to therapy. Mol Neurobiol 2018; 55(2): 1410–1418. doi: 10.1007/s12035-017-0392-y. PMID: 28160214.
  30. Turner M.R., Kiernan M.C. Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? Amyotroph Lateral Scler 2012; 13(3): 245–250. doi: 10.3109/17482968.2011.636050. PMID: 22424125.
  31. Clark R., Blizzard C., Dickson T. Inhibitory dysfunction in amyotrophic lateral sclerosis: future therapeutic opportunities. Neurodegener Dis Manag 2015; 5(6): 511–525. doi: 10.2217/nmt.15.49. PMID: 26619150.
  32. Menon P., Kiernan M.C., Vucic S. Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clin Neurophysiol 2015; 126(4): 803–809. doi: 10.1016/j.clinph.2014.04.023. PMID: 25227219.
  33. Vucic S., Nicholson G.A., Kiernan M.C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 2008; 131(Pt 6): 1540–1550. doi: 10.1093/brain/awn071. PMID: 18469020.
  34. van Zundert B., Izaurieta P., Fritz E., Alvarez F.J. Early pathogenesis in the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Cell Biochem 2012; 113(11): 3301–3312. doi: 10.1002/jcb.24234. PMID: 22740507.
  35. Vucic S., Cheah B.C., Yiannikas C., Kiernan M.C. Cortical excitability distinguishes ALS from mimic disorders. Clin Neurophysiol 2011; 122(9): 1860–1866. doi: 10.1016/j.clinph.2010.12.062. PMID: 21382747.
  36. Attarian S., Azulay J.P., Lardillier D. et al. Transcranial magnetic stimulation in lower motor neuron diseases. Clin Neurophysiol 2005; 116(1): 35–42. PMID: 15589181.
  37. Vucic S., Kiernan M.C. Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2007; 78(8): 849–852. PMID: 17210625.
  38. Menon P., Geevasinga N., Yiannikas C. et al. Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17(5–6): 389–396. doi: 10.3109/21678421.2016.1145232. PMID: 26888565.
  39. Geevasinga N., Menon P., Yiannikas C. et al. Diagnostic utility of cortical excitability studies in amyotrophic lateral sclerosis. Eur J Neurol 2014; 21(12): 1451–1457. doi: 10.1111/ene.12422. PMID: 24698287.
  40. Menon P., Geevasinga N., Yiannikas C. et al. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol 2015; 14(5): 478–484. doi: 10.1016/S1474-4422(15)00014-9. PMID: 25843898.
  41. Poydasheva A.G., Bakulin I.S., Chernyavskiy A.Yu. et al. Motor cortex mapping with navigated transcranial magnetic stimulation and its clinical application. Meditsinskiy alfavit. 2017; 2(22): 21–25. (In Russ.).
  42. de Carvalho M., Miranda P.C., Luís M.L. et al. Cortical muscle representation in amyotrophic lateral sclerosis patients: changes with disease evolution. Muscle Nerve 1999; 22: 1684–1692. PMID: 10567081.
  43. Chervyakov A.V., Bakulin I.S., Savitskaya N.G. et al. Navigated transcranial magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve 2015; 51(1): 125–131. doi: 10.1002/mus.24345. PMID: 25049055.
  44. Menon P., Kiernan M.C., Vucic S. et al. Cortical dysfunction underlies the development of the split-hand in amyotrophic lateral sclerosis. PLoS One 2014; 9(1): e87124. doi: 10.1371/journal.pone.0087124. PMID: 24475241.
  45. Devine M.S., Pannek K., Coulthard A. et al. Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis. Neuroimage Clin 2015; 7: 782–787. doi: 10.1016/j.nicl.2015.03.006. PMID: 25844330.
  46. Ravits J., Paul P., Jorg C. Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 2007; 68(19): 1571–1575. PMID: 17485643.
  47. Menon P., Geevasinga N., van den Bos M. et al. Cortical hyperexcitability and disease spread in amyotrophic lateral sclerosis. Eur J Neurol 2017; 24(6): 816–824. doi: 10.1111/ene.13295. PMID: 28436181.

Statistics

Views

Abstract: 1225

PDF (Russian): 1377

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2018 Bakulin I.S., Poydasheva A.G., Chernyavsky A.Y., Suponeva N.А., Zakharova M.N., Piradov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies