New horizons of non-invasive brain stimulation in clinical medicine

Cover Page


Non-invasive brain stimulation belongs to most significant neurotechnologies which have arisen in the XXIth century and are characterized by universal medical importance. This group of methods comprises rhythmic transcranial magnetic stimulation (rTMS) and transcranial electric stimulation (transcranial direct current stimulation, tDCS). A spectrum of conditions for which these methods may be effective is steadily expanding and includes a variety of prevalent disorders of the modern society, such as obesity, depression, etc. The low effectiveness of lifestyle modification, as well as a wide range of pharmacological drugs’ side effects and high risks of surgical treatment determine the need to search for new safe methods of correction of eating behavior and obesity, a real pandemy of our society. A number of data suggest the patogenic role of changes of the frontal-striatal interactions in eating behanior disorders. Taking into account the existing models of the development of food dependence, the main approach to the use of rTMS and tDCS is stimulation of areas involved in cognitive control, such as the dorsolateral prefrontal cortex. Current data on studies of rTMS and tDCS in patients with impairment of eating behavior, as well as safety issues of using these techniques in routine clinical practice are reviewed.

About the authors

Alexandra G. Poydasheva

Research Center of Neurology

ORCID iD: 0000-0003-1841-1177

junior researcher, neurologist, Department of neurorehabilitation and physiotherapy

Russian Federation, Moscow

Ilya S. Bakulin

Research Center of Neurology

ORCID iD: 0000-0003-0716-3737

Cand. Sci. (Med.), researcher, Department of neurorehabilitation and physiotherapy

Russian Federation, Moscow

Natalya A. Suponeva

Research Center of Neurology

Author for correspondence.
ORCID iD: 0000-0003-3956-6362

D. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, principal researcher, Department of neurorehabilitation and physiotherapy

Russian Federation, Moscow

Ekaterina A. Troshina

National Medical Research Center of Endocrinology

Russian Federation, Moscow

Marine M. Tanashyan

Research Center of Neurology

Russian Federation, Moscow

Ivan I. Dedov

National Medical Research Center of Endocrinology

Russian Federation, Moscow

Mikhail A. Piradov

Research Center of Neurology

ORCID iD: 0000-0002-6338-0392

D. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Director

Russian Federation, Moscow


  1. Kremneva E.I., Suslin A.S., Govorin A.N. et al. [fMRI-mapping of alimentary functional areas of the brain]. Annals of clinical and experimental neurology 2015; 9(1): 32–36. (In Russ.)
  2. Piradov M.A., Illarioshkin S.N., Gushcha A.O. et al. [Modern technology of neuromodulation]. In.: [XXI Century Neurology: diagnostic, treatment and research technologies: Guide for Doctors in 3 Volumes. Eds. Piradov M.A., Illarioshkin S.N., Tanashyan.M.M.]. Moscow: ATMO, 2015. V.2: 46–98. (In Russ.)
  3. Poydasheva A.G., Bakulin I.S., CHernyavskiy A.Yu. et al. [Mapping of cortical representations of muscles with the help of navigational transcranial magnetic stimulation: possible applications in clinical practice]. Meditsinskiy alfavit 2017; 2(22): 21–25. (In Russ.)
  4. Suponeva N.A., Bakulin I.S., Poydasheva A.G., Piradov M.A. [Safety of transcranial magnetic stimulation: a review of international recommendations and new data]. Nervno-myshechnyye bolezni 2017; 7(2): 21-36 (In Rush.)
  5. Ayyad C., Andersen T. Long-term efficacy of dietary treatment of obesity:A systematic review of studies published between 1931 and 1999. Obesity Reviews 2000; 1(2): 113–119. doi: 10.1046/j.1467-789x.2000.00019.x. PMID: 12119984.
  6. Barth K.S., Rydin-Gray S., Kose S. et al. Food cravings and the effects of left prefrontal repetitive transcranial magnetic stimulation using an improved sham condition. Front Psychiatry 2011; 2: 9. doi: 10.3389/fpsyt.2011.00009. PMID: 21556279.
  7. Batterink L., Yokum S., Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fMRI study. NeuroImage 2010; 52(4): 1696-703. doi: 10.1016/j.neuroimage.2010.05.059. PMID: 20510377.
  8. Bergmann T. O., Karabanov A., Hartwigsen G. et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage 2016; 140: 4–19. doi: 10.1016/j.neuroimage.2016.02.012. PMID: 26883069.
  9. Berridge K.C. “Liking” and “wanting” food rewards: Brain substrates and roles in eating disorders. Physiol Behav 2009; 97(5): 537–550. doi: 10.1016/j.physbeh.2009.02.044. PMID: 19336238.
  10. Berthoud H.R. Brain, appetite and obesity. Physiol Behav 2005; 85(1): 1–2. PMID: 15924902 doi: 10.1016/j.physbeh.2005.04.006
  11. Bikson M., Inoue M., Akiyama H. et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 2004;557(1): 175–190. doi: 10.1113/jphysiol.2003.055772. PMID: 14978199.
  12. Bikson M., Grossman P., Thomas C. et al. Safety of transcranial direct current stimulation: Evidence dased update 2016. Brain Stimulation 2016; 10(5): 983–985. doi: 10.1016/j.brs.2016.06.004. PMID: 28751225.
  13. Bliss T.V., Cooke S.F. Long-term potentiation and long-term depression: a clinical perspective. Clinics (Sao Paulo, Brazil) 2011; 66(Suppl 1): 3–17. doi: 10.1590/s1807-59322011001300002. PMID: 21779718.
  14. Carnell S., Gibson C., Benson L. et al. Neuroimaging and obesity: Current knowledge and future directions. Obesity Reviews 2012; 13(1): 43–56. doi: 10.1111/j.1467-789X.2011.00927.x. PMID: 21902800
  15. Chan C.Y., Hounsgaard J., Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol 1988; 402: 751–71. PMID: 3236254.
  16. Chervyakov A.V., Chernyavsky A.Y., Sinitsyn D.O., Piradov M.A. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 2015; 9: 303. doi: 10.3389/fnhum.2015.00303. PMID: 26136672.
  17. Demos K.E., Heatherton T.F., Kelley W.M. Individual Differences in Nucleus Accumbens Activity to Food and Sexual Images Predict Weight Gain and Sexual Behavior. J Neurosci 2012; 32(16): 5549–5552. doi: 10.1523/JNEUROSCI. 5958-11.2012. PMID: 22514316.
  18. Devlin M.J. Is there a place for obesity in DSM-V? Int J Eating Disord 2007; 40 (Suppl): S83–S88. doi: 10.1002/eat.20430. PMID: 17683083.
  19. Di Lazzaro V., Ziemann U., Lemon R.N. State of the art: Physiology of transcranial
  20. motor cortex stimulation. Brain Stimulation 2008; 1(4): 345–362. doi: 10.1016/j.brs.2008.07.004. PMID: 20633393.
  21. Duffau H. Brain plasticity: From pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 2006; 13(9): 885–897. PMID: 17049865. doi: 10.1016/j.jocn.2005.11.045.
  22. Fregni F., Nitsche M.A., Loo C.K. et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): Review and recommendations from an expert panel. Clin Res Regulatory Affairs 2015; 32(1): 22–35. doi: 10.3109/10601333.2015.980944. PMID: 25983531.
  23. Fregni F., Orsati F., Pedrosa W. et al. Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite 2008; 51(1): 34–41. doi: 10.1016/j.appet.2007.09.016. PMID: 18243412.
  24. Gearhardt A.N., Grilo C.M., Dileone R.J. et al. Can food be addictive? Public health and policy implications. Addiction 2011; 106(7): 1208–1212. doi: 10.1111/j.1360-0443.2010.03301.x. PMID: 21635588.
  25. Gluck M.E., Alonso-Alonso M., Piaggi P. et al. Neuromodulation targeted to the prefrontal cortex induces changes in energy intake and weight loss in obesity. In Obesity 2015; 23(11): 2149–2156. doi: 10.1002/oby.21313. PMID: 26530931.
  26. Goldman R.L., Borckardt J.J., Frohman H.A. et al. Prefrontal cortex transcranial direct current stimulation (tDCS) temporarily reduces food cravings and increases the self-reported ability to resist food in adults with frequent food craving. Appetite 2011; 56(3): 741–746. doi: 10.1016/j.appet.2011.02.013. PMID: 21352881.
  27. Goldman R.L., Canterberry M., Borckardt J.J. et al. Executive control circuitry differentiates degree of success in weight loss following gastric-bypass surgery. Obesity 2013; 21(11): 2189–2196. doi: 10.1002/oby.20575. PMID: 24136926.
  28. Hall P.A., Vincent C.M., Burhan A.M. Non-invasive brain stimulation for food cravings, consumption, and disorders of eating: A review of methods, findings and controversies. Appetite 2018; 124: 78–88. doi: 10.1016/j.appet.2017.03.006. PMID: 28288802.
  29. Hoogendam J.M., Ramakers G.M.J., Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimulation 2010; 3(2): 95–118. doi: 10.1016/j.brs.2009.10.005. PMID: 20633438.
  30. Ifland J.R., Preuss H.G., Marcus M.T. et al. Refined food addiction: A classic substance use disorder. Medical Hypotheses 2009; 72(5): 518–526. doi: 10.1016/j.mehy.2008.11.035. PMID: 19223127.
  31. Jauch-Chara K., Kistenmacher A., Herzog N. et al. Repetitive electric brain stimulation reduces food intake in humans. Am J Clin Nutrition 2014; 100(4): 1003–1009. doi: 10.3945/ajcn.113.075481. PMID: 25099550.
  32. Kekic M., McClelland J., Campbell I. et al. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings. Appetite 2014; 78: 55–62. doi: 10.1016/j.appet.2014.03.010. PMID: 24656950.
  33. Kim S.H., Chung J., Kim T.H. et al. The effects of repetitive transcranial magnetic stimulation on eating behaviors and body weight in obesity: A randomized controlled study. Brain Stimulation 2018; 11(3): 528–535. doi: 10.1016/j.brs.2017.11.020. PMID: 29326022.
  34. Kuwabara S., Cappelen-Smith C., Lin C.S. et al. Effects of voluntary activity on the excitability of motor axons in the peroneal nerve. Muscle Nerve 2002; 25(2): 176–184. doi: 10.1002/mus.10030. PMID: 11870683.
  35. Lapenta O.M., Sierve K.D., de Macedo E.C. et al. Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite 2014; 83: 42–48. doi: 10.1016/j.appet.2014.08.005. PMID: 25128836.
  36. Ljubisavljevic M., Maxood K., Bjekic J. et al. Long-term effects of repeated prefrontal cortex transcranial direct current stimulation (tDCS) on food craving in normal and overweight young adults. Brain Stimulation 2016; 9(6): 826–833. doi: 10.1016/j.brs.2016.07.002. PMID: 27498606.
  37. Lowe C.J., Vincent C., Hall P.A. Effects of noninvasive brain stimulation on food cravings and consumption: A meta-analytic review. Psychosom Med 2017; 79(1): 2–13. doi: 10.1097/PSY.0000000000000368. PMID: 27428861.
  38. Martel P., Fantino M. Influence of the amount of food ingested on mesolimbic dopaminergic system activity: A microdialysis study. Pharmacol Biochem Behavior 1996; 55(2): 297–302. doi: 10.1016/S0091-3057(96)00087-1. PMID: 8951968.
  39. Montenegro R.A., Okano A.H., Cunha F.A. et al. Prefrontal cortex transcranial direct current stimulation associated with aerobic exercise change aspects of appetite sensation in overweight adults. Appetite 2012; 58(1): 333–338. doi: 10.1016/j.appet.2011.11.008. PMID: 22108669.
  40. Pollock A., Farmer S.E., Brady M.C. et al. Interventions for improving upper limb function after stroke. The Cochrane Database of Systematic Reviews 2014 (11): CD010820. doi: 10.1002/14651858.CD010820.pub2. PMID: 25387001.
  41. Puzziferri N., Roshek T.B., Mayo H.G. et al. Long-term follow-up after bariatric surgery. JAMA 2014; 312(9): 934–942. doi: 10.1001/jama.2014.10706. PMID: 25182102.
  42. Rossi S., Hallett M., Rossini P.M., Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120(12): 2008–2039. doi: 10.1016/j.clinph.2009.08.016. PMID: 19833552.
  43. Stice E., Spoor S., Bohon C. et al. Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study. J Abnorm Psychol 2008; 117(4): 924–935. doi: 10.1037/a0013600. PMID: 19025237.
  44. Sun X., Kroemer N.B., Veldhuizen M.G. et al. Basolateral amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. J Neurosci 2015; 35(20): 7964–7976. doi: 10.1523/JNEUROSCI.3884-14.2015. PMID: 25995480.
  45. Swinburn B.A., Sacks G., Hall K.D. et al. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011; 378(9793): 804–814. doi: 10.1016/S0140-6736(11)60813-1. PMID: 21872749.
  46. Taha S.A. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J Neurosci 2005; 25(5): 1193–1202. doi: 10.1523/JNEUROSCI.3975-04.2005. PMID: 15689556.
  47. Uher R., Yoganathan D., Mogg A. et al. Effect of left prefrontal repetitive transcranial magnetic stimulation on food craving. Biol Psychiatry 2005; 58(10):840–842. doi: 10.1016/j.biopsych.2005.05.043. PMID: 16084855.
  48. Val-Laillet D., Aarts E., Weber B. et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage. Clinical 2015; 8: 1–31. doi: 10.1016/j.nicl.2015.03.016. PMID: 26110109.
  49. Van den Eynde F., Claudino A.M., Mogg A. et al. Repetitive transcranial magnetic stimulation reduces cue-induced food craving in bulimic disorders. Biol Psychiatry 2010; 67(8): 793–795. doi: 10.1016/j.biopsych.2009.11.023. PMID: 20060105.
  50. Walpoth M., Hoertnagl C., Mangweth-Matzek B. et al. Repetitive transcranial magnetic stimulation in bulimia nervosa: preliminary results of a single-centre, randomised, double-blind, sham-controlled trial in female outpatients. Psychother Psychosom 2008; 77(1): 57–60. doi: 10.1159/000110061. PMID: 18087209.
  51. Wang G.-J., Volkow N.D., Fowler J.S. The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002; 6(5): 601–609. doi: 10.1517/14728222.6.5.601. PMID: 12387683.
  52. Woods A.J., Antal A., Bikson M. et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 2016; 127(2): 1031–1048. doi: 10.1016/j.clinph.2015.11.012. PMID: 26652115.
  53. Yokum S., Gearhardt A.N., Harris J.L. et al. Individual differences in striatum activity to food commercials predict weight gain in adolescents. Obesity 2014; 22(12): 2544–2551. doi: 10.1002/oby.20882. PMID: 25155745.



Abstract: 1171

PDF (Russian): 794

Article Metrics

Metrics Loading ...



Copyright (c) 2018 Poydasheva A.G., Bakulin I.S., Suponeva N.A., Troshina E.A., Tanashyan M.M., Dedov I.I., Piradov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies