Autonomic support of cognitive functions and functional asymmetry in normal aging and chronic cerebrovascular disorders

Cover Page


The increase in life expectancy is accompanied by an increase in the number of patients suffering from chronic cerebrovascular diseases with progressive cognitive decline, up to dementia. Therefore, the search for new approaches to studying the disease pathogenesis, prevention and treatment is relevant. We analysed the data on correlation of cognitive characteristics with reactions of the autonomic nervous system (ANS) and ANS-regulated systems in normal aging and in patients with vascular encephalopathy (VE). Reactivity of cerebral blood flow as a result of cortical-ANS interaction was studied, characteristics of cerebral blood flow influencing the interhemispheric energetic processes (studied with direct current potentials of the brain) were analyzed, and correlation of blood pressure and heart rate with cognitive characteristics were assessed. Since the signs of cognitive decline are observed during normal aging and VE, an attempt was made to analyze the dependence of cognitive and ANS functions not only on VE, but also on the age. We showed some specific features of cortical-ANS interaction in groups of patients divided in accordance with small criteria of functional asymmetry. The obtained results are of value for studying VE pathogenesis and for prognosing cognitive impairment in patients with VE.

About the authors

Vitaly F. Fokin

Research Center of Neurology

Author for correspondence.
Russian Federation, Moscow

Natalia V. Ponomareva

Research Center of Neurology

Russian Federation, Moscow

Roman B. Medvedev

Research Center of Neurology

Russian Federation, Moscow

Alla A. Shabalina

Research Center of Neurology

Russian Federation, Moscow

Marine M. Tanashyan

Research Center of Neurology

Russian Federation, Moscow

Olga V. Lagoda

Research Center of Neurology

Russian Federation, Moscow


  1. Suslina Z.A., Varakin Yu.Y., Vereshchagin N.V. Sosudistyye zabolevaniya golovnogo mozga: Epidemiologiya. Patogeneticheskiye mekhanizmy. Profilaktika. [Vascular diseases of the brain: Epidemiology. Pathogenetic mechanisms. Prevention]. Moscow: MEDpress-inform, 2009. 352 p. (In Russ.)
  2. Suslina Z.A., Illarioshkin S.N., Piradov M.A. [Neurology and neuroscience – a forecast of development]. Annals of Clinical and Experimental Neurology 2007; 1(1): 5–9. (In Russ.)
  3. Tanashyan M.M., Maksimova M.Yu., Domashenko M.A. Distsirkulyatornaya entsefalopatiya [Discirculatory encephalopathy]. Putevoditel’ vrachebnykh naznacheniy. Terapevticheskiy spravochnik 2015; 2: 1–25. (In Russ.)
  4. Fokin V.F., Ponomareva N.V., Medvedev R.B. et al. [Vascular reactivity caused by cognitive load in patients with vascular encephalopathy]. Asymmetry 2016; 10 (3): 18–31. (In Russ.)
  5. Fokin V.F., Ponomareva N.V., Medvedev R.B. et al. [The influence of age on the reactivity of the blood supply system and the cognitive functions of patients with vascular encephalopathy]. Asymmetry 2017; 11 (4): 48–55. (In Russ.)
  6. Craig A.D. Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cog Sci 2005; 9(12): 566–571. doi: 10.1016/j.tics.2005.10.005. PMID: 16275155.
  7. Fokin V.F., Ponomareva N.V. [Technology research of cerebral asymmetry]. In: [Piradov M.A., Illarioshkin S.N., Tanashyan.M.M. (Eds.) XXI Century Neurology: diagnostic, treatment and research technologies: Guide for Doctors in 3 Volumes]. Moscow: ATMO, 2015. 3: 350–375. (In Russ.)
  8. Aston-Jones G., Rajkowski J., Kubiak P. et al. Role of the locus coeruleus in emotional activation. Prog Brain Res 1996; 107: 379–402. PMID: 8782532.
  9. Dworkin S. Interoception. In: Cacioppo J.T., Tassinary L.G., Berntson G.G. (Eds.). Handbook of Psychophysiology. 3d Ed. New-York: Cambridge University Press, 2007: 482-485. doi: 10.13140/2.1.2871.1369.
  10. Spyer K.M. Central nervous control of the cardiovascular system. In: Mathias C.J., Bannister R. (Eds.). Autonomic failure: a textbook of clinical disorders of the autonomic nervous system. Oxford: Oxford University Press, 1999: 45–55.
  11. Fokin V.F., Ponomareva N.V. Energeticheskaya fiziologiya mozga [Neuroenergetics and brain physiology]. Moscow: Antidor, 2003. 288p. (In Russ.)
  12. Fokin V.F., Ponomareva N.V., Kuntsevich G.I. [Electrophysiological correlates of blood velocity in the middle cerebral artery of a healthy person]. Vestnik RAMN 2013; 10: 57–60. DOI: org/10.15690/vramn.v68i10.790. (In Russ.)
  13. Fokin V.F., Ponomareva N.V., Medvedev R.B. et al. [Influence of the cerebral blood flow system on the slow electrical activity of the brain in patients with dyscirculatory encephalopathy]. Annals of Clinical and Experimental Neurology 2017; 11 (4): 29–35. DOI: 10.18454 / ACEN.2017.4.3. (In Russ.)
  14. Fokin V.F., Ponomareva N.V. [The ratio of the level of DC potential of the brain and visual evoked potentials in normal and pathological aging in humans]. Zhurn. vyssh. nervn deyat. 1994; 2: 222–228. (In Russ.).
  15. Hugdahl K. Symmetry and asymmetry in the human brain. Eur Review 2005; 13(2): 119–133. doi: 10.1017/S1062798705000700.
  16. Marstrand J.R., Garde E., Rostrup E., et al. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 2002; 33: 972–976. PMID: 11935046.
  17. Amano A., Tsunoda M., Aigaki T. et al. Age-related changes of dopamine, noradrenaline and adrenaline in adrenal glands of mice. Geriatr Gerontol Int 2013;13(2): 490–498. doi: 10.1111/j.1447-0594.2012.00929. PMID: 22934574.
  18. Critchley H.D., Corfield D.R., Chandler M.P. et al. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 2000; 523(1): 259–270. PMID: 10673560.
  19. Сritchley H.D. Neural mechanisms of autonomic, affective, and cognitive integration. J Compar Neurol 2005; 493; 154–166. doi: 10.1002/cne.20749.PMID: 16254997.
  20. Fokin V.F., Ponomareva N.V., Klopov V.I. et al. [Cardiovascular reactivity caused by cognitive load in patients with vascular encephalopathy]. Asymmetry 2014; 8 (3): 4–22. (In Russ.)
  21. Fokin V.F., Medvedev R.B., Ponomareva N.V. et al. [Lateralization of the bilateral blood flow in the central and peripheral arteries with cognitive load in patients with vascular encephalopathy]. Asymmetry 2018; 12 (2): 74–84. DOI: 10.18454 / ASY.2018.2.14185. (In Russ.).
  22. Okada Y., Galbreath M.M., Shibata S. et al. Morning blood pressure surge is associated with arterial stiffness and sympathetic baroreflex sensitivity in hypertensive seniors. Am. J. Physiol Heart Circ Physiol 2013; 305(6): H793–802. doi: 10.1152/ajpheart.00254.2013. PMID: 23832695.
  23. Ogasawara K. Ogawa A., Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion. Stroke 2002; 33: 1857–1862. PMID: 12105366.
  24. Harris K.F., Matthews K.A. Interactions between autonomic nervous system activity and endothelial function: A model for the development of cardiovascular disease. Psychosom Med 2004; 66: 153–164. doi: 10.1097/01.psy.0000116719.95524.e2. PMID: 15039499.
  25. Pihlajamäki M., Tanila H., Hänninen T. et al. Verbal fluency activates the left medial temporal lobe: A functional magnetic resonance imaging study. Ann Neurol 2000; 47: 470–476. doi: 10.1002/1531-8249(200004)47:4<470:AIDANA10>3.0.CO;2-M. PMID: 10762158.
  26. Fokin V.F., Medvedev R.B., Ponomareva N.V. et al. [Regulation of the linear blood flow velocity in paired main arteries under cognitive load in patients with vascular encephalopathy]. Asymmetry 2017; 11 (3): 36–45. (In Russ.).
  27. Boban M., Črnac P, Junaković A, Malojčić B. Hemodynamic monitoring of middle cerebral arteries during cognitive tasks performance. Psychiatry Clin Neurosci 2014; 68 (11): 795–803. PMID: 24735174 doi: 10.1111/pcn.12191.
  28. Knecht S., Deppe M., Ebner A. et al. Noninvasive determination of language lateralization by functional transcranial doppler sonography. A comparison with the Wada test. Stroke 1998; 29: 82–86. PMID: 9445333.
  29. Hartje W., Ringelstein E.B., Ktstinger B. et al. Transcranial Doppler ultrasonic assessment of middle cerebral artery blood flow velocity changes during verbal and visuospatial cognitive tasks. Neuropsychologia 1994; 32(12): 1443–1452. doi: 10.1016/0028-3932(94)90116-3. PMID: 7885574.
  30. Sudheimer K.D., O’Hara R., Spiegel D. et al. Cortisol, cytokynes, and hippocampal volume interactions in the elderly. Front Aging Neurosci 2014; 6: 153–157. doi: 10.3389/fnagi.2014.00153. PMID: 25071562.
  31. Iadecola C., Park L., Capone C. Threats to the mind: aging, amyloid, and hypertension. Stroke 2009; 40 (3 Suppl): S40–S44. doi: 10.1161/STROKEAHA.108.533638. PMID: 19064785.
  32. Droste D.W., Harders A.G., Rastogi E. Two transcranial Doppler studies on blood flow velocity in both middle cerebral arteries during rest and the performance of cognitive tasks. Neuropsychologia 1989; 27: 1221–1234. doi: 10.1016/0028-3932(89)90034-1. PMID: 2594168.
  33. Stroobant N., Vingerhoets G. Transcranial Doppler ultrasonography monitoring of cerebral hemodynamics during performance of cognitive tasks: a review. Neuropsychol Rev 2000; 10 (40): 213–231. PMID: 11132101.
  34. Fokin V.F., Medvedev R.B., Ponomareva N.V. et al. [Asymmetry of carpal strength and cognitive characteristics of patients with dyscirculatory encephalopathy]. Asymmetry 2018; 12 (3): 31–38. doi: 10.18454/ASY.2018.3.16175. (In Russ.)
  35. Fokin V.F., Medvedev R.B., Ponomareva N.V. et al. [Cognitive and vegetative characteristics of patients with dyscirculatory encephalopathy with the right and left leading eye]. Asymmetry 2015; 9 (3): 4–13. (In Russ.)



Abstract: 1431

PDF (Russian): 752

Article Metrics

Metrics Loading ...



Copyright (c) 2018 Fokin V.F., Ponomareva N.V., Medvedev R.B., Shabalina A.A., Tanashyan M.M., Lagoda O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies