Virtual reality as an upper limb rehabilitation approach

Cover Page

Abstract

The consequences of cerebrovascular diseases significantly reduce the quality of life of patients. Recovery of basic motor skills, such as the ability to reach the object, manipulate it, and coordinate the movements of two hands is one of the top-priority tasks in restoring patient’s living and social activity. Training in the environment as close to the real one as possible, active involvement of the patient, as well as interactive feedback, which allows patients to control the correct execution of motor tasks and adjust their own efforts are required for successful motor recovery. The development of computer technology enabled the improvement of conventional approaches to rehabilitation of stroke patients. Virtual reality (VR) is extensively used to meet these conditions and achieve successful targeted training for a specific motor task. The technical basis of VR includes computer modeling and computer simulation, as well as three-dimensional visualization, which provides realistic visualization of movements on the screen. These technologies enable reconstruction of the appropriate working space for motor skill training, and provide interactive feedback and high intensity of rehabilitation. This article provides information about the development of these technologies in the field of motor rehabilitation of upper extremity function, comparative analysis of systems that are currently used or being developed, and prospects of VR development in neurorehabilitation.

About the authors

Anastasia E. Khizhnikova

Research Center of Neurology

Email: Anton.S.Klochkov@gmail.com
Russian Federation, Moscow

Anton S. Klochkov

Research Center of Neurology

Author for correspondence.
Email: Anton.S.Klochkov@gmail.com
Russian Federation, Moscow

Artem M. Kotov-Smolenskiy

Research Center of Neurology

Email: Anton.S.Klochkov@gmail.com
Russian Federation, Moscow

Nataliya A. Suponeva

Research Center of Neurology

Email: Anton.S.Klochkov@gmail.com
ORCID iD: 0000-0003-3956-6362

D. Sci. (Med.), Corr. Member of the Russian Academy of Sciences, Head, Department of neurorehabilitation and physiotherapy

Russian Federation, Moscow

Lyudmila A. Chernikova

Reseach Center of Neurology

Email: Anton.S.Klochkov@gmail.com
Russian Federation, Moscow

References

  1. Клочков А.С., Черникова Л.А. Роботизированные и механотерапевтические устройства для восстановления функции руки после инсульта. Русск. мед. журн. 2014; 22 (22): 1589–1592.
  2. Мокиенко О.А., Люкманов Р.Х., Черникова Л.А. и др. Интерфейс мозг–компьютер: первый опыт клинического применения в России. Физиология человека. 2016; 42 (1): 31.
  3. Столярова Г.Р. Ткачева Л.Г. Реабилитация больных с постинсультными двигательными расстройствами. М.: Медицина, 1978: 57.
  4. Суслина З.А., Иллариошкин С.Н., Пирадов М.А. Неврология и нейронауки – прогноз развития. Анн. клинич. и эксперим. неврол. 2007; 1 (1): 5–9.
  5. Умарова Р.М., Черникова Л.А., Танашян М.М. и др. Нервно-мышечная электростимуляция в острейший период ишемического инсульта. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2005; 4: 6–8.
  6. Устинова К.И., Черникова Л.А. Виртуальная реальность в нейрореабилитации Анн. клинич. и эксперим. неврол. 2008; 2 (4): 34–39.
  7. Черникова Л.А. Роботизированные системы в нейрореабилитации. Анн. клинич. и эксперим. неврол. 2009; 3 (3): 30–36.
  8. Черникова Л.А., Иоффе М.Е., Прокопенко Р.А. и др. Применение технологии виртуальной реальности при восстановлении движений в паретичной руке у больных, перенесших инсульт. Физиотерапия Бальнеология Реабилитация. 2011; (3) 3–7.
  9. Черникова Л.А., Пирадов М.А., Супонева Н.А. и др. Высокотехнологичные методы нейрореабилитации при заболеваниях нервной системы В кн.: Неврология XXI века: диагностические, лечебные и исследовательские технологии Руководство для врачей. Под ред. М.А. Пирадова, С.Н. Иллариошкина, М.М. Танашян. М.,2015: 274–331.
  10. Adamovich S.V., Fluet G.G., Mathai A. et al. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J Neuroeng Rehabil. 2009; 17 (6):28. PMID: 19615045 doi: 10.1186/1743-0003-6-28
  11. Adams R.J., Lichter M.D., Krepkovich E.T. et al. Assessing upper extremity motor function in practice of virtual activities of daily living. Trans Neural Syst Rehabil Eng. 2015; 23 (2): 287–296. PMID: 25265612 doi: 10.1109/TNSRE.2014.2360149
  12. Bao X., Mao Y., Lin Q. et al. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2013; 8 (31): 2904–2913. PMID: 25206611 doi: 10.3969/j.issn.1673-5374.2013.31.003
  13. Beebe J.A., Lang C.E. Active range of motion predicts upper extremity function 3 months after stroke. Stroke. 2009; 40 (5): 1772–1779. PMID: 19265051 doi: 10.1161/STROKEAHA.108.536763
  14. Bonnechère B., Jansen B., Salvia P. et al. Validity and reliability of the Kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture. 2014; 39 (1): 593–598.PMID: 24269523 doi: 10.1016/j.gaitpost.2013.09.018
  15. Bourbonnais D., Vanden Noven S., Carey K.M., Rymer W.Z. Abnormal spatial patterns of elbow muscle activation in hemiparetic human subjects. Brain. 1989; 112 (1): 85–102. PMID: 2917281
  16. Bourbonnais D., Vanden Noven S., Pelletier R. Incoordination in patients with hemiparesis. Can J Public Health. 1992; 83 (2): 58–63.PMID: 1468052
  17. Cameirão M.S., Badia S.B., Duarte E et al. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 2012; 43 (10): 2720–2728. PMID: 22871683 doi: 10.1161/STROKEAHA.112.653196
  18. Cameirão M.S., Badia S.B., Oller E.D. et al. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010; 22; 7: 48. PMID: 20860808 doi: 10.1186/1743-0003-7-48
  19. Carr J.H., Shepherd R.B. Motor Relearning Programme for Stroke.Rockville: Aspen Publishers, 1983; 172.
  20. Chirivella P., del Barco M. et al. NeuroAtHome: A software platform of clinical videogames specifically designed for the cognitive rehabilitation of stroke patients. Brain Injury, 2014; 28 (5–6): 517–878.
  21. Cirstea M.C., Levin M.F. Compensatory strategies for reaching in stroke. Brain. 2000; 123 (5): 940–953. PMID: 10775539
  22. Cruz-Neira C., Sandin D., DeFanti T. et al. The CAVE: Audio Visual Experience Automatic Virtual Environment. Communications of the ACM, 1992; 35 (6): 64–72. doi: 10.1145/129888.129892
  23. Dhurjaty S. The economics of telerehabilitation. Telemed J E Health. 2004; 10 (2): 196–199. PMID: 15319049 doi: 10.1089/tmj.2004.10.196
  24. Gagliardo P., Ferreiro G., Izquierdo A. et al. NeuroAtHome: A software platform of clinical videogames specifically designed for the motor rehabilitation of stroke patients. Brain Injury, 2014; 28 (5–6): 517–878.
  25. Galvin J., Levac D. Facilitating clinical decision-making about the use of virtual reality within pediatric motor rehabilitation: describing and classifying virtual reality systems. Developmental neurorehabilitation. 2011; 14 (2): 112–122.
  26. Grimes G. Digital data entry glove interface device US Patent 4,414,537, 1983.
  27. Hailey D., Roine R., Ohinmaa A. et al. Evidence of benefit from telerehabilitation in routine care: a systematic review. J Telemed Telecare 2011; 17 (6): 281–287. PMID: 21844172 doi: 10.1258/jtt.2011.101208
  28. Iosa M., Morone G., Fusco A. et al. Leap motion controlled videogamebased therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil. 2015; 22 (4): 306–316. PMID: 26258456 doi: 10.1179/1074935714Z.0000000036
  29. Jack D., Boian R., Merians A.S. et al. Virtual reality-enhanced stroke rehabilitation. Trans Neural Syst Rehabil Eng. 2001; 9 (3): 308–318. PMID: 11561668 doi: 10.1109/7333.948460
  30. Jonassen D. Handbook of Research on Educational Communications and technology. 2nd ed., Lawrence Erlbaum Associates Inc., Publishers.2004: 461–498.
  31. Kiper P., Agostini M., Luque-Moreno C. et al. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res Int. 2014; 2014: 752128. PMID: 24745024 doi: 10.1155/2014/752128
  32. Krijn M., Emmelkamp P.M., Olafsson R.P. et al. Virtual reality exposure therapy of anxiety disorders: a review. Clin Psychol Rev. 2004;24 (3): 259–281. PMID: 15245832 doi: 10.1016/j.cpr.2004.04.001
  33. Lamson R. VR in Psychotherapy Virtual Therapy of Anxiety Disorders. CyberEdge Journal. 1994; (4): 1–28.
  34. Lanier J., Minsky M., Fisher S. et al. Virtual Environments And Interactivity: Windows To The Future. ACM Siggraph Panel Proceedings. 1989.
  35. Laver K., George S., Thomas S. et al. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review. Eur J Phys Rehabil Med. 2015; 51 (4): 497–506. PMID: 26158918
  36. Lewis G.N., Rosie J.A. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disabil Rehabil. 2012; 34 (22): 1880–1886. PMID: 22480353 doi: 10.3109/09638288.2012.670036
  37. Lippman A. Movie maps: An application of the optical videodisc to computer graphics 1980. In SIGGRAPH Conf. Proc., 32–43.
  38. Merians A.S., Fluet G.G., Qiu Q. et al. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis. J Neuroeng Rehabil. 2011; 16 (8): 27. PMID: 21575185 doi: 10.1186/1743-0003-8-27
  39. Pietrzak E., Cotea C., Pullman S. Using commercial video games for upper limb stroke rehabilitation: is this the way of the future? Top Stroke Rehabil. 2014; 21 (2): 152–162. PMID: 24710975 doi: 10.1310/tsr2102-152
  40. Saposnik G., Teasell R., Mamdani M. et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010; 41 (7): 1477–1484. PMID: 20508185 doi: 10.1161/STROKEAHA.110.584979
  41. Simpson L.A., Eng J.J. Functional recovery following stroke: capturing changes in upper-extremity function. Neurorehabil. Neural Repair. 2013; 27 (3): 240–250. PMID: 23077144 doi: 10.1177/1545968312461719
  42. Trombly C.A., Thayer-Nason L., Bliss G. et al. The effectiveness of therapy in improving finger extension in stroke patients. Am J Occup Ther. 1986; 40 (9): 612–617. PMID: 3766683 doi: 10.5014/ajot.40.9.612
  43. Truelsen T., Piechowski-Jozwiak B., Bonita R. et al. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol 2006;13: 581–198. PMID: 16796582 doi: 10.1111/j.1468-1331.2006.01138.x
  44. Viau A., Feldman A.G., McFadyen B.J. et al. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil. 2004; 14; 1 (1): 11.PMID: 15679937 doi: 10.1186/1743-0003-1-11

Statistics

Views

Abstract: 1293

PDF (Russian): 762

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2016 Khizhnikova A.E., Klochkov A.S., Kotov-Smolenskiy A.M., Suponeva N.A., Chernikova L.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies