Integrative functions of the retrosplenial cortex in rats: anatomy, connectomics, and cellular electrophysiology

Cover Page

Abstract

Current review is focused on the integrative functions of the retrosplenial cortex, which neurons are largely involved in spatial orientation and ambulation of an organism. We discuss anatomy and connectivity of the retrosplenial cortex in rats as well as the most recent findings concerning the behavioral specialization of its neurons observed using multielectrode recordings. Pattern of connections of the retrosplenial cortex allows to consider its interfacing role in linking brain regions specifically involved in spatial navigation and memory with areas of the associative cortex which lack spatial tuning. In this paper, we touch upon that unique anatomical connectivity which is reflected in the peculiar behavioral specialization of the retrosplenial cortex neurons. Complex spatial tuning of retrosplenial neurons is likely to represent the association of spatial and nonspatial information, and provides a clue to principles of information integration in the cerebral cortex.

About the authors

Olga A. Mineeva

P.K. Anokhin Institute of Normal Physiology, Moscow

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

Dmitrii V. Bezryadnov

P.K. Anokhin Institute of Normal Physiology, Moscow

Email: platonova@neurology.ru
Russian Federation

Sergey A. Chekhov

P.K. Anokhin Institute of Normal Physiology, Moscow

Email: platonova@neurology.ru
Russian Federation

Оlga E. Svarnik

Institute of Psychology of Russian Academy of Sciences, Moscow

Email: platonova@neurology.ru
Russian Federation

Konstantin V. Anokhin

P.K. Anokhin Institute of Normal Physiology, Moscow

Email: platonova@neurology.ru
Russian Federation

References

  1. Alivisatos A.P. Andrews A.M., Boyden E.S. et al. Nanotools for neuroscience and brain activity mapping. ACS Publications 2013; 7: 1850–1866. doi: 10.1021/nn4012847. PMID: 23514423.
  2. Kim C.K., Adhikari A., Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017; 18: 222–235. doi: 10.1038/nrn.2017.15. PMID: 28303019.
  3. Luo L., Callaway E.M., Svoboda K. Genetic dissection of neural circuits: a decade of progress. Neuron 2018; 98: 256–281. doi: 10.1016/j.neuron.2018.05.004. PMID: 29772206.
  4. Rivnay J., Wang H., Fenno L. et al. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 2017; 3: P. e1601649. doi: 10.1126/sciadv.1601649. PMID: 28630894.
  5. Kandel E. A place and a grid in the sun. Cell 2014; 159: 1239–1242. doi: 10.1016/j.cell.2014.11.033. PMID: 25480286.
  6. Langmoen I.A., Apuzzo M.L. The brain on itself: nobel laureates and the history of fundamental nervous system function. Neurosurgery 2007; 61: 891–908. doi: 10.1227/01.neu.0000303185.49555.a9. PMID: 18091266.
  7. Yuste R. From the neuron doctrine to neural networks. Nat Rev Neurosci 2015; 16: 487–497. doi: 10.1038/nrn3962. PMID: 26152865.
  8. O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 1971; 34: 171–175. DOI: http://dx.doi.org/10.1016/0006-8993(71)90358-1. PMID: 5124915.
  9. Taube J.S., Muller R.U., Ranck J.B. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 1990; 10: 420–435. DOI: https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990. PMID: 2303851.
  10. Hafting T., Fyhn M., Molden S. et al. Microstructure of a spatial map in the entorhinal cortex. Nature 2005; 436: 801–806. doi: 10.1038/nature03721. PMID: 15965463.
  11. Mitchell A.S., Czajkowski R., Zhang N. et al. Retrosplenial cortex and its role in spatial cognition. Brain Neurosci Adv 2018; 2: 2398212818757098. DOI: https://doi.org/10.1177/2398212818757098. PMID: 30221204.
  12. Lavenex P., Amaral D.G. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 2000; 10: 420–430. doi: 10.1002/1098-1063(2000)10:4<420::AID-HIPO8>3.0.CO;2-5. PMID: 10985281.
  13. Sewards T.V., Sewards M.A. Input and output stations of the entorhinal cortex: superficial vs. deep layers or lateral vs. medial divisions? Brain Res Brain Res Rev 2003; 42: 243–251. DOI: https://doi.org/10.1016/S0165-0173(03)00175-9. PMID: 12791442.
  14. Harker K.T., Whishaw I.Q. Impaired place navigation in place and matching-to-place swimming pool tasks follows both retrosplenial cortex lesions and cingulum bundle lesions in rats. Hippocampus 2004; 14: 224–231. doi: 10.1002/hipo.10159. PMID: 15098727.
  15. Pothuizen H.H.J., Davies M., Aggleton J.P., Vann S.D. Effects of selective granular retrosplenial cortex lesions on spatial working memory in rats. Behav Brain Res 2010; 208: 566–575. doi: 10.1016/j.bbr.2010.01.001. PMID: 20074589.
  16. Vann S.D., Aggleton J.P. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav Neurosci 2002; 116: 85–94. DOI: doi: 10.1037//0735-7044.116.1.85. PMID: 11895186.
  17. Cooper B.G., Mizumori S.J. Retrosplenial cortex inactivation selectively impairs navigation in darkness. Neuroreport 1999; 10: 625–630. PMID: 10208601.
  18. Elduayen C., Save E. The retrosplenial cortex is necessary for path integration in the dark. Behav Brain Res 2014; 272: 303–307. doi: 10.1016/j.bbr.2014.07.009. PMID: 25026093.
  19. Miller A.M.P., Vedder L.C., Law L.M., Smith D.M. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci 2014; 8: 586. doi: 10.3389/fnhum.2014.00586. PMID: 25140141.
  20. Epstein R.A., Patai E.Z., Julian J.B., Spiers H.J. The cognitive map in humans: spatial navigation and beyond. Nat Neurosci 2017; 20: 1504–1513. doi: 10.1038/nn.4656. PMID: 29073650.
  21. Epstein R.A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 2008; 12: 388–396. doi: 10.1016/j.tics.2008.07.004. PMID: 18760955.
  22. An Y., Varma V.R., Varma S. et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. 2018; 14: 318–329. doi: 10.1016/j.jalz.2017.09.011. PMID: 29055815.
  23. Minoshima S., Giordani B., Berent S. et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997; 42: 85–94. doi: 10.1002/ana.410420114. PMID: 9225689.
  24. Nestor P.J., Fryer T.D., Ikeda M., Hodges J.R. Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). Eur J Neurosci 2003; 18: 2663–2667. DOI: https://doi.org/10.1046/j.1460-9568.2003.02999.x. PMID: 14622168.
  25. Pengas G., Hodges J.R., Watson P., Nestor P.J. Focal posterior cingulate atrophy in incipient Alzheimer’s disease. Neurobiol Aging 2010; 31: 25–33. doi: 10.1016/j.neurobiolaging.2008.03.014. PMID: 18455838.
  26. Pengas G., Williams G.B., Acosta-Cabronero J. et al. The relationship of topographical memory performance to regional neurodegeneration in Alzheimer’s disease. Front Aging Neurosci 2012; 4: 17. doi: 10.3389/fnagi.2012.00017. PMID: 22783190.
  27. Teipel S., Grothe M.J., Alzheimer’s Disease Neuroimaging Initiative. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer’s disease? Eur J Nucl Med Mol Imaging 2016; 43: 526–536. doi: 10.1007/s00259-015-3222-3. PMID: 26555082.
  28. Tu S., Wong S., Hodges J.R. et al. Lost in spatial translation — A novel tool to objectively assess spatial disorientation in Alzheimer’s disease and frontotemporal dementia. Cortex J Devoted Study Nerv Syst Behav 2015; 67: 83–94. doi: 10.1016/j.cortex.2015.03.016. PMID: 25913063.
  29. Villain N., Desgranges B., Viader F. et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease. J Neurosci 2008; 28: 6174–6181. doi: 10.1523/JNEUROSCI.1392-08.2008. PMID: 18550759.
  30. Yasuno F., Kazui H., Yamamoto A. et al. Resting-state synchrony between the retrosplenial cortex and anterior medial cortical structures relates to memory complaints in subjective cognitive impairment. Neurobiol Aging 2015; 36: 2145–2152. doi: 10.1016/j.neurobiolaging.2015.03.006. PMID: 25862421.
  31. Sugar J., Witter M.P., van Strien N.M., Cappaert N.L. The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. An interactive connectome. Front Neuroinformatics 2011; 5: 7. doi: 10.3389/fninf.2011.00007. PMID: 21847380.
  32. Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates in Stereotaxic Coordinates. London: Elsevier, 2007.
  33. Lau C., Ng L., Thompson C. et al. Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 2008; 9: 153. doi: 10.1186/1471-2105-9-153. PMID: 18366675.
  34. Wyss J.M., Van Groen T., Sripanidkulchai K. Dendritic bundling in layer I of granular retrosplenial cortex: intracellular labeling and selectivity of innervation. J Comp Neurol 1990; 295: 33–42. doi: 10.1002/cne.902950104. PMID: 2341634.
  35. Jones B.F., Groenewegen H.J., Witter M.P. Intrinsic connections of the cingulate cortex in the rat suggest the existence of multiple functionally segregated networks. Neuroscience 2005; 133: 193–207. doi: 10.1016/j.neuroscience.2005.01.063. PMID: 15893643.
  36. Shibata H., Honda Y., Sasaki H., Naito J. Organization of intrinsic connections of the retrosplenial cortex in the rat. Anat Sci Int 2009; 84: 280–292. doi: 10.1007/s12565-009-0035-0. PMID: 19322631.
  37. Van Groen T., Wyss J.M. Connections of the retrosplenial granular b cortex in the rat. J Comp Neurol 2003; 463: 249–263. doi: 10.1002/cne.10757. PMID: 12820159.
  38. Van Groen T., Wyss J.M. Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 1990; 300: 593–606. doi: 10.1002/cne.903000412. PMID: 2273095.
  39. Miyashita T., Rockland K.S. GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. Eur J Neurosci 2007; 26: 1193–1204. doi: 10.1111/j.1460-9568.2007.05745.x. PMID: 17767498.
  40. Shibata H. Terminal distribution of projections from the retrosplenial area to the retrohippocampal region in the rat, as studied by anterograde transport of biotinylated dextran amine. Neurosci Res 1994; 20: 331–336. DOI: https://doi.org/10.1016/0168-0102(94)90055-8. PMID: 7532841.
  41. Naber P.A., Witter M.P. Subicular efferents are organized mostly as parallel projections: a double-labeling, retrograde-tracing study in the rat. J Comp Neurol 1998; 393: 284–297. DOI: https://doi.org/10.1002/(SICI)1096-9861(19980413)393:3<284::AID-CNE2>3.0.CO;2-Y. PMID: 9548550.
  42. Köhler C. Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 1985; 236: 504–522. doi: 10.1002/cne.902360407. PMID: 3902916.
  43. Vogt B.A., Miller M.W. Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 1983; 216: 192–210. doi: 10.1002/cne.902160207. PMID: 6863602.
  44. Jun J.J., Steinmetz N.A., Siegle J.H. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017; 551: 232–236. doi: 10.1038/nature24636. PMID: 29120427.
  45. Beggs J.M., Moyer J.R. Jr, McGann J.P., Brown T.H. Prolonged synaptic integration in perirhinal cortical neurons. J Neurophysiol 2000; 83: 3294–3298. doi: 10.1152/jn.2000.83.6.3294. PMID: 10848549.
  46. McGann J.P., Moyer J.R., Brown T.H. Predominance of late-spiking neurons in layer VI of rat perirhinal cortex. J Neurosci 2001; 21: 4969–4976. DOI: https://doi.org/10.1523/JNEUROSCI.21-14-04969.2001. PMID: 11438572.
  47. Kurotani T., Miyashita T., Wintzer M. et al. Pyramidal neurons in the superficial layers of rat retrosplenial cortex exhibit a late-spiking firing property. Brain Struct Funct 2013; 218: 239–254. doi: 10.1007/s00429-012-0398-1. PMID: 22383041.
  48. Alexander A.S., Nitz D.A. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat Neurosci 2015; 18: 1143–1151. doi: 10.1038/nn.4058. PMID: 26147532.
  49. Chen L.L., Lin L.H., Green E.J. et al. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 1994; 101: 8–23. DOI: https://doi.org/10.1007/BF00243212. PMID: 7843305.
  50. Chen L.L., Lin L.H., Barnes C.A., McNaughton B.L. Head-direction cells in the rat posterior cortex. II. Contributions of visual and ideothetic information to the directional firing. Exp Brain Res 1994; 101: 24–34. doi: 10.1007/BF00243213. PMID: 7843299.
  51. Cho J., Sharp P.E. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav Neurosci 2001; 115: 3–25. PMID: 11256450.
  52. Jacob P.-Y., Casali G., Spieser L. et al. An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat Neurosci 2017; 20: 173–175. doi: 10.1038/nn.4465. PMID: 27991898.
  53. Alexander A.S., Nitz D.A. Spatially periodic activation patterns of retrosplenial cortex encode route sub-spaces and distance traveled. Curr Biol 2017; 27: 1551–1560.e4. doi: 10.1016/j.cub.2017.04.036. PMID: 28528904.
  54. Smith D.M., Barredo J., Mizumori S.J.Y. Complimentary roles of the hippocampus and retrosplenial cortex in behavioral context discrimination. Hippocampus 2012; 22: 1121–1133. doi: 10.1002/hipo.20958. PMID: 21630374.
  55. Navratilova Z., Hoang L.T., Schwindel C.D. et al. Experience-dependent firing rate remapping generates directional selectivity in hippocampal place cells. Front Neural Circuits 2012; 6: 6. doi: 10.3389/fncir.2012.00006. PMID: 22363267

Statistics

Views

Abstract: 648

PDF (Russian): 487

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2019 Mineeva O.A., Bezryadnov D.V., Chekhov S.A., Svarnik О.E., Anokhin K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies