Current view on phenotypic and genetic features of autosomal recessive inherited peripheral neuropathies

Cover Page


Cite item

Full Text

Abstract

Inherited peripheral neuropathies (IPNs) are a heterogeneous group of hereditary motor and sensory neuropathies (HMSN), hereditary motor neuropathies, and hereditary sensory neuropathies. IPNs can be inherited in autosomal dominant, autosomal recessive or X-linked manner. In clinical practice, isolated cases are more common, and the absence of genealogical data significantly complicates differential diagnosis. About 45% of HMSN cases lack genetic confirmation.

For a number of autosomal recessive IPNs, peculiar clinical, electrophysiological and histological features can be distinguished, however, recent publications show IPNs often to have pronounced clinical and genetic heterogeneity. That complicates the differential diagnosis of hereditary neuropathies. Prevalence of autosomal recessive pathology increases in remote populations and isolates due to a local founder effects. As the literature review showed, there are many such examples among autosomal recessive IPNs. Detection of the founder effect and major mutations in the population and development of diagnostic algorithms based on these data can significantly improve the diagnostic process.

About the authors

Aysylu F. Murtazina

Association of Neuromuscular Disorders Specialists; Medical Center “Practical Neurology”

Author for correspondence.
Email: aysylumurtazina@gmail.com
Russian Federation, Moscow

Olga A. Shchagina

Research Center for Medical Genetics

Email: aysylumurtazina@gmail.com
Russian Federation, Moscow

Sergey S. Nikitin

Association of Neuromuscular Disorders Specialists; Medical Center “Practical Neurology”

Email: aysylumurtazina@gmail.com
Russian Federation, Moscow

Elena L. Dadali

Research Center for Medical Genetics

Email: aysylumurtazina@gmail.com
Russian Federation, Moscow

Alexander V. Polyakov

Research Center for Medical Genetics

Email: aysylumurtazina@gmail.com
Russian Federation, Moscow

References

  1. Murphy S.M., Laura M., Fawcett K. et al. Charcot–Marie–Tooth disease: frequency of genetic subtypes and guidelines for genetic testing. J Neurol Neurosurg Psychiatry 2012; 83: 706–710. doi: 10.1136/jnnp-2012-302451. PMID: 22577229.
  2. Fridman V., Bundy B., Reilly M.M., et al. on behalf of the Inherited Neuropathies Consortium. CMT subtypes and disease burden in patients enrolled in the Inherited Neuropathies Consortium natural history study: a cross-sectional analysis. J Neurol Neurosurg Psychiatry 2015; 86: 873–878. doi: 10.1136/jnnp-2014-308826. PMID: 25430934.
  3. Saporta A.S., Sottile S.L., Miller L.J. et al. Charcot–Marie–Tooth disease subtypes and genetic testing strategies. Ann Neurol 2011; 69: 22–33. doi: 10.1002/ana.22166. PMID: 21280073.
  4. Peeters K., Chamova T., Tournev I., Jordanova A. Axonal neuropathy with neuromyotonia: there is a HINT. Brain 2017; 140: 868–877. doi: 10.1093/brain/aww301. PMID: 28007994.
  5. Higuchi Y., Hashiguchi A., Yuan J. et al. Mutations in MME cause an autosomal-recessive Charcot–Marie–Tooth disease type 2. Ann Neurol 2016; 79: 659–672. doi: 10.1002/ana.24612. PMID: 26991897.
  6. Navarro C., Teijeira S. Neuromuscular disorders in the Gypsy ethnic group. A short review. Acta Myol 2003; 22: 11–14. PMID: 12966699.
  7. van Paassen B.W., Bronk M., Verhamme C. et al. Pseudodominant inheritance pattern in a family with CMT2 caused by GDAP1 mutations. J Peripher Nerv Syst 2017; 22: 464–467. doi: 10.1111/jns.12236. PMID: 28837237.
  8. Dyck P.J., Lambert E.H. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol 1968; 18: 603–618. PMID: 4297451.
  9. Ramchandren S. Charcot–Marie–Tooth disease and other genetic polyneuropathies. Continuum (Minneap Minn) 2017; 23(5, Peripheral Nerve and Motor Neuron Disorders): 1360–1377. doi: 10.1212/CON.0000000000000529. PMID: 28968366.
  10. Mathis S., Goizet C., Tazir M., et al. Charcot–Marie–Tooth diseases: an update and some new proposals for the classification. J Med Genet 2015; 52: 681–690. doi: 10.1136/jmedgenet-2015-103272. PMID: 26246519.
  11. Baxter R.V., Ben Othmane K., Rochelle J.M. et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot–Marie–Tooth disease type 4A/8q21. Nature Genet 2002; 30: 21–22. doi: 10.1038/ng796. PMID: 11743579.
  12. Cuesta A., Pedrola L., Sevilla T. et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot–Marie–Tooth type 4A disease. Nature Genet 2002; 30: 22–24. doi: 10.1038/ng798. PMID: 11743580.
  13. Claramunt R., Pedrola L., Sevilla T. et al. Genetics of Charcot–Marie–Tooth disease type 4A: mutations, inheritance, phenotypic variability, and founder effect. J Med Genet 2005; 42: 358–365. doi: 10.1136/jmg.2004.022178. PMID: 15805163.
  14. Marco A., Cuesta A., Pedrola L. et al. Evolutionary and structural analyses of GDAP1, involved in Charcot–Marie–Tooth disease, characterize a novel class of glutathione transferase-related genes. Mol Biol Evol 2004; 21: 176–187. doi: 10.1093/molbev/msh013. PMID: 14595091.
  15. Pedrola L., Espert A., Wu X. et al. GDAP1, the protein causing Charcot–Marie–Tooth disease type 4A, is expressed in neurons and is associated with mitochondria. Hum Mol Genet 2005; 14: 1087–1094. doi: 10.1093/hmg/ddi121. PMID: 15772096.
  16. Niemann A., Ruegg M., La Padula V. et al. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot–Marie–Tooth disease. J Cell Biol 2005; 170: 1067–1078. doi: 10.1083/jcb.200507087. PMID: 16172208.
  17. Pareyson D., Saveri P., Sagnelli A., Piscosquito G. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett 2015; 596: 66–77. doi: 10.1016/j.neulet.2015.04.001. PMID: 25847151.
  18. Niemann A., Wagner K.M., Ruegg M., Suter U. GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis 2009; 36: 509–520. doi: 10.1016/j.nbd.2009.09.011. PMID: 19782751.
  19. Kurbatov S.A., Milovidova T.B., Fedotov V.P. et al. [A case of hereditary motor and sensory neuropathy type IVA with unusual genealogy]. Nervno-myshechnye bolezni 2018; 8(2): 75–83. doi: 10.17650/2222-8721-2018-8-2-75-83. (In Russ.)
  20. Sivera R., Frasquet M., Lupo V. et al. Distribution and genotype-phenotype correlation of GDAP1 mutations in Spain. Scientific Reports 2017; 7: 6677. doi: 10.1038/s41598-017-06894-6. PMID: 28751717.
  21. Tazir M., Bellatache M., Nouioua S., Vallat J.M. Autosomal recessive Charcot–Marie–Tooth disease: from genes to phenotypes. J Peripher Nerv Syst 2013; 18: 113–129. doi: 10.1111/jns5.12026. PMID: 23781959.
  22. Di M., Gulli R., Balestra P. et al. A novel mutation of GDAP1 associated with Charcot–Marie–Tooth disease in three Italian families: evidence for a founder effect. J Neurol Neurosurg Psychiatry 2004; 75: 1495–1498. doi: 10.1136/jnnp.2003.028100. PMID: 15377708.
  23. Marttila M., Kytövuori L., Helisalmi S. et al. Molecular epidemiology of Charcot–Marie–Tooth disease in Northern Ostrobothnia, Finland: a population-based study. Neuroepidemiology 2017; 49: 34–39. doi: 10.1159/000478860. PMID: 28810241.
  24. Kabzinska D., Drac H., Rowinska-Marcinska K. et al. Early onset Charcot–Marie–Tooth disease caused by a homozygous Leu239Phe mutation in the GDAP1 gene. Acta Myol 2006; 25: 1: 34–37. PMID: 17039978.
  25. Arzumanov Yu.L., Abakumova A.A., Borisova E.V. et al. [Hereditary motor and sensory neuropathy type 4A]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2010; 110(5): 13–16. (In Russ.).
  26. Quattrone A., Gambardella A., Bono F. et al. Autosomal recessive hereditary motor and sensory neuropathy with focally folded myelin sheaths: clinical, electrophysiologic, and genetic aspects of a large family. Neurology 1996; 46: 1318–1324. PMID: 8628474.
  27. Bolino A., Muglia M., Conforti F.L. et al. Charcot–Marie–Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 2000; 25: 17–19. PMID: 10802647.
  28. Ohnishi A., Murai Y., Ikeda M. et al. Autosomal recessive motor and sensory neuropathy with excessive myelin outfolding. Muscle Nerve 1989; 12: 568–575. doi: 10.1002/mus.880120707. PMID: 2779605.
  29. Previtali S.C., Quattrini A., Bolino A. Charcot–Marie–Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases. Expert Rev Mol Med 2007; 9: 1–16. doi: 10.1017/S1462399407000439. PMID: 17880751.
  30. Bolino A., Bolis A., Previtali S.C. et al. Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 2004; 167: 711–721. doi: 10.1083/jcb.200407010. PMID: 15557122.
  31. Bucci C., Bakke O., Progida C. Charcot–Marie–Tooth disease and intracellular traffic. Progr Neurobiol 2012; 99: 191–225. doi: 10.1016/j.pneurobio.2012.03.003. PMID: 22465036.
  32. Murakami T., Kutoku Y., Nishimura H. et al. Mild phenotype of Charcot–Marie–Tooth disease type 4B1. J Neurol Sci 2013; 334: 176–179. doi: 10.1016/j.jns.2013.08.001. PMID: 23962696.
  33. Senderek J., Bergmann C., Weber S. et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot–Marie–Tooth neuropathy type 4B2/11p15. Hum Mol Genet 2003; 12: 349–356. PMID: 12554688.
  34. Zambon A.A., Natali Sora M.G., Cantarella G. et al. Vocal cord paralysis in Charcot–Marie–Tooth type 4b1 disease associated with a novel mutation in the myotubularin-related protein 2 gene: A case report and review of the literature. Neuromuscul Disord 2017; 27: 487–491. doi: 10.1016/j.nmd.2017.01.006. PMID: 28190646.
  35. Azzedine H., Bolino A., Taieb T. et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot–Marie–Tooth disease associated with early-onset glaucoma. Am J Hum Genet 2003; 72: 1141–1153. doi: 10.1086/375034. PMID: 12687498.
  36. Negrão L., Almendra L., Ribeiro J. et al. Charcot–Marie–Tooth 4B2 caused by a novel mutation in the MTMR13/SBF2 gene in two related Portuguese families. Acta Myol 2014; 33: 144–148. PMID: 25873783.
  37. Gabreels-Festen A., van Beersum S., Eshuis L. et al. Study on the gene and phenotypic characterisation of autosomal recessive demyelinating motor and sensory neuropathy (Charcot–Marie–Tooth disease) with a gene locus on chromosome 5q23-q33. J Neurol Neurosurg Psychiatry 1999; 66: 569–574.
  38. Vijay S., Chiu M., Dacks J.B., Roberts R.C. Exclusive expression of the Rab11 effector SH3TC2 in Schwann cells links integrin-α6 and myelin maintenance to Charcot–Marie–Tooth disease type 4C. Biochim Biophys Acta 2016; 1862: 1279–1290. doi: 10.1016/j.bbadis.2016.04.003. PMID: 27068304.
  39. Berti C., Nodari A., Wrabetz L., Feltri M.L. Role of integrins in peripheral nerves and hereditary neuropathies. NeuroMolecular Med 2006; 8: 191–204. PMID: 16775376.
  40. Jerath N.U., Mankodi A., Crawford T.O. et al. Charcot–Marie–Tooth disease type 4C: novel mutations, clinical presentations, and diagnostic challenges. Muscle Nerve 2018; 57: 749–755. doi: 10.1002/mus.25981. PMID: 28981955.
  41. Yger M., Stojkovic T., Tardieu S. et al. Characteristics of clinical and electrophysiological pattern of Charcot-Marie-Tooth 4C. J Peripher Nerv Syst 2012; 17: 112–122. doi: 10.1111/j.1529-8027.2012.00382.x. PMID: 22462672.
  42. Azzedine H., Ravisé N., Verny C. et al. Spine deformities in Charcot–Marie–Tooth 4C caused by SH3TC2 gene mutations. Neurology 2006; 67: 602–606. PMID: 16924012.
  43. Houlden H., Laura M., Ginsberg L. et al. The phenotype of Charcot–Marie–Tooth disease type 4C due to SH3TC2 mutations and possible predisposition to an inflammatory neuropathy. Neuromuscul Disord 2009; 19: 264–269. doi: 10.1016/j.nmd.2009.01.006. PMID: 19272779.
  44. Piscosquito G., Saveri P., Magri S. et al. Screening for SH3TC2 gene mutations in a series of demyelinating recessive Charcot–Marie–Tooth disease (CMT4). J Peripher Nerv Syst 2016; 21: 142–149. doi: 10.1111/jns.12175. PMID: 27231023.
  45. Gooding R., Colomer J., King R. et al. A novel Gypsy founder mutation, p.Arg1109X in the CMT4C gene, causes variable peripheral neuropathy phenotypes. J Med Genet 2005; 42: e69. doi: 10.1136/jmg.2005.034132. PMID: 16326826.
  46. Gosselin I., Thiffault I., Tétreault M. et al. Founder SH3TC2 mutations are responsible for a CMT4C French-Canadians cluster. Neuromuscul Disord 2008; 18: 483–492. doi: 10.1016/j.nmd.2008.04.001. PMID: 18511281.
  47. Azzedine H., Ravisé N., Tazir M. et al. Eight new mutations of the KIAA1985 gene associated with severe form of demyelinating autosomal recessive Charcot–Marie–Tooth disease (CMT4C) in 11 families and founder effects in families North African and European origin. Eur J Neurol 2005; 12: 26.
  48. Kalaydjieva L., Hallmayer J., Chandler D. et al. Gene mapping in Gypsies identifies a novel demyelinating neuropathy on chromosome 8q24. Nat Genet 1996; 14: 214–217. PMID: 8841199.
  49. Kalaydjieva L., Nikolova A., Turnev I. et al. Hereditary motor and sensory neuropathy-Lom, a novel demyelinating neuropathy associated with deafness in gypsies. Clinical, electrophysiological and nerve biopsy findings. Brain 1998; 121: 399–408. PMID: 9549516.
  50. King R.H., Chandler D., Lopaticki S. et al. Ndrg1 in development and maintenance of the myelin sheath. Neurobiol Dis 2011; 42: 368–380. doi: 10.1016/j.nbd.2011.01.030. PMID: 21303696.
  51. Askautrud H.A., Gjernes E., Gunnes G. et al. Global gene expression analysis reveals a link between NDRG1 and vesicle transport. PLoS One 2014; 9: e87268. doi: 10.1371/journal.pone.0087268. PMID: 24498060.
  52. Okuda T., Higashi Y., Kokame K. et al. Ndrg1-deficient mice exhibit a progressive demyelinating disorder of peripheral nerves. Mol Cell Biol 2004; 24: 3949–3956. PMID: 15082788.
  53. Echaniz-Laguna A., Degos B., Bonnet C. et al. NDRG1-linked Charcot–Marie–Tooth disease (CMT4D) with central nervous system involvement. Neuromuscul Disord 2007; 17: 163–168. doi: 10.1016/j.nmd.2006.10.002. PMID: 17142040.
  54. Luigetti M., Taroni F., Milani M. et al. Clinical, electrophysiological and pathological findings in a patient with Charcot–Marie–Tooth disease 4D caused by the NDRG1 Lom mutation. J Neurol Sci 2014; 345: 271–273. doi: 10.1016/j.jns.2014.07.042. PMID: 25108819.
  55. Chandler D., Angelicheva D., Heather L. et al. Hereditary motor and sensory neuropathy-Lom (HMSNL): refined genetic mapping in Romani (Gypsy) families from several European countries. Neuromuscul Disord 2000; 10: 584–591. PMID: 11053686.
  56. Piscosquito G., Magri S., Saveri P. et al. A novel NDRG1 mutation in a nonRomani patient with CMT4D/HMSN-Lom. J Peripher Nerv Syst 2017; 1: 47–50. doi: 10.1111/jns.12201. PMID: 27982524.
  57. Chen B., Niu S., Chen N. et al. A novel homozygous NDRG1 mutation in a Chinese patient with Charcot–Marie–Tooth disease 4D. J Clin Neurosci 2018; 53: 231–234. doi: 10.1016/j.jocn.2018.04.024. PMID: 29724652.
  58. Sevilla T., Sivera R., Martínez-Rubio D. et al. The EGR2 gene is involved in axonal Charcot–Marie–Tooth disease. Eur J Neurol 2015; 22: 1548–1555. doi: 10.1111/ene.12782. PMID: 26204789.
  59. Svaren J., Meijer D. The molecular machinery of myelin gene transcription in Schwann cells. Glia 2008; 56: 1541–1551. doi: 10.1002/glia.20767. PMID: 18803322.
  60. Topilko P., Schneider-Maunoury S., Levi G. et al. Krox-20 controls myelination in the peripheral nervous system. Nature 1994; 371: 796–769. PMID: 7935840.
  61. Decker L., Desmarquet-Trin-Dinh C., Taillebourg E. et al. Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. J Neurosci 2006; 26: 9771–9779. doi: 10.1523/JNEUROSCI.0716-06.2006. PMID: 16988048.
  62. Warner L.E., Mancias P., Butler I.J. et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 1998; 18: 382–384. PMID: 9537424.
  63. Szigeti K., Wiszniewski W., Saifi G.M. et al. Functional, histopathologic and natural history study of neuropathy associated with EGR2 mutations. Neurogenetics 2007; 8: 257–262. doi: 10.1007/s10048-007-0094-0. PMID: 17717711.
  64. Funalot B., Topilko P., Arroyo M.A. et al. Homozygous deletion of an EGR2 enhancer in congenital amyelinating neuropathy. Ann Neurol 2012; 71: 719–723. doi: 10.1002/ana.23527. PMID: 22522483.
  65. Takashima H., Boerkoel C.F., De Jonghe P. et al. Periaxin mutations cause a broad spectrum of demyelinating neuropathies. Ann Neurol 2002; 51: 709–715. PMID: 12112076.
  66. Gillespie C.S., Sherman D.L., Blair G.E., Brophy P.J. Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron 1994; 12: 497–508. PMID: 8155317.
  67. Scherer S.S., Xu Y.T., Bannerman P.G. et al. Periaxin expression in myelinating Schwann cells: modulation by axon-glial interactions and polarized localization during development. Development 1995; 121: 4265–4273. PMID: 8575326.
  68. Sherman D.L., Fabrizi C., Gillespie C.S., Brophy P.J. Specific disruption of a Schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 2001; 30: 677–687. PMID: 11430802.
  69. Delague V., Bareil C., Tuffery S. et al. Mapping of a new locus for autosomal recessive demyelinating Charcot–Marie–Tooth disease to 19q13.1-13.3 in a large consanguineous Lebanese family: exclusion of MAG as a candidate gene. Am J Hum Genet 2000; 67: 236–243. doi: 10.1086/302980. PMID: 10848494.
  70. Tokunaga S., Hashiguchi A., Yoshimura A. et al. Late-onset Charcot–Marie–Tooth disease 4F caused by periaxin gene mutation. Neurogenetics 2012; 13: 359–365. doi: 10.1007/s10048-012-0338-5. PMID: 22847150.
  71. Nouioua S., Hamadouche T., Funalot B. et al. Novel mutations in the PRX and the MTMR2 genes are responsible for unusual Charcot–Marie–Tooth disease phenotypes. Neuromuscul Disord 2010; 21: 543–550. doi: 10.1016/j.nmd.2011.04.013. PMID: 21741241.
  72. Thomas P.K., Kalaydjieva L., Youl B. et al. Hereditary motor and sensory neuropathy-russe: new autosomal recessive neuropathy in Balkan Gypsies. Ann Neurol 2001; 50: 452–427. PMID: 11601496.
  73. Hantke J., Chandler D., King R. et al. A mutation in an alternative untranslated exon of hexokinase 1 associated with hereditary motor and sensory neuropathy — Russe (HMSNR). Eur J Hum Genet 2009; 17: 1606–1614. doi: 10.1038/ejhg.2009.99. PMID: 19536174.
  74. Sevilla T., Martínez-Rubio D., Márquez C. et al. Genetics of the Charcot–Marie–Tooth disease in the Spanish Gypsy population: the hereditary motor and sensory neuropathy-Russe in depth. Clin Genet 2013; 83: 565–570. doi: 10.1111/cge.12015. PMID: 22978647.
  75. Šafka Brožková D., Haberlová J., Mazanec R. et al. HSMNR belongs to the most frequent types of hereditary neuropathy in the Czech Republic and is twice more frequent than HMSNL. Clin Genet 2016; 90: 161–165. doi: 10.1111/cge.12745. PMID: 26822750.
  76. Stendel C., Roos A., Deconinck T. et al. Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, Frabin/FGD4. Am J Hum Genet 2007; 81: 158–164. doi: 10.1086/518770. PMID: 17564972.
  77. Delague V., Jacquier A., Hamadouche T. et al. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot–Marie–Tooth type 4H. Am J Hum Genet 2007; 81: 1–16. doi: 10.1086/518428. PMID: 17564959.
  78. Sandre-Giovannoli A., Delague V., Hamadouche T. et al. Homozygosity mapping of autosomal recessive demyelinating Charcot–Marie–Tooth neuropathy (CMT4H) to a novel locus on chromosome 12p11.21-q13.11. J Med Genet 2005; 42: 260–265. doi: 10.1136/jmg.2004.024364. PMID: 15744041.
  79. Houlden H., Hammans S., Katifi H., Reilly M.M. A novel Frabin (FGD4) nonsense mutation p.R275X associated with phenotypic variability in CMT4H. Neurology 2009; 72: 617–620. doi: 10.1212/01.wnl.0000342463.35089.cc. PMID: 19221294.
  80. Kondo D., Shinoda K., Yamashita K.I. et al. A novel mutation in FGD4 causes Charcot–Marie–Tooth disease type 4H with cranial nerve involvement. Neuromuscul Disord 2017; 27: 959–961. doi: 10.1016/j.nmd.2017.07.011. PMID: 28847448.
  81. Hyun Y.S., Lee J., Kim H.J. et al. Charcot–Marie–Tooth disease type 4H resulting from compound heterozygous mutations in FGD4 from nonconsanguineous Korean families. Ann Hum Genet 2015; 79: 460–469. doi: 10.1111/ahg.12134. PMID: 26400421.
  82. Boubaker C., Hsairi-Guidara I., Castro C. et al. A novel mutation in FGD4/FRABIN causes Charcot–Marie–Tooth disease type 4H in patients from a consanguineous Tunisian family. Ann Hum Genet 2013; 77: 336–343. doi: 10.1111/ahg.12017. PMID: 23550889.
  83. Chow C.Y., Landers J.E., Bergren S.K. et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 2009; 84: 85–88. doi: 10.1016/j.ajhg.2008.12.010. PMID: 19118816.
  84. Osmanovic A., Rangnau I., Kosfeld A. et al. FIG4 variants in central European patients with amyotrophic lateral sclerosis: a whole-exome and targeted sequencing study. Eur J Hum Genet 2017; 25: 324–331. doi: 10.1038/ejhg.2016.186. PMID: 28051077.
  85. Vaccari I., Carbone A., Previtali S.C. et al. Loss of Fig4 in both Schwann cells and motor neurons contributes to CMT4J neuropathy. Human Mol Genet 2015; 24: 383–396. doi: 10.1093/hmg/ddu451. PMID: 25187576.
  86. Nicholson G., Lenk G.M., Reddel S.W. et al. Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P2 phosphatase FIG4. Brain 2011; 134: 1959–1971. doi: 10.1093/brain/awr148. PMID: 21705420.
  87. Chow C.Y., Zhang Y., Dowling J.J. et al. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 2007; 448: 68–72. doi: 10.1038/nature05876. PMID: 17572665.
  88. Zhang X., Chow C.Y., Sahenk Z. et al. Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 2008; 131: 1990–2001. doi: 10.1093/brain/awn114. PMID: 18556664.
  89. Hamadouche T., Poitelon Y., Genin E. et al. Founder effect and estimation of the age of the c.892C>T (p.Arg298Cys) mutation in LMNA associated to Charcot–Marie–Tooth subtype CMT2B1 in families from North Western Africa. Ann Hum Genet 2008; 72(Pt 5): 590–597. doi: 10.1111/j.1469-1809.2008.00456.x. PMID: 18549403.
  90. Leal A., Morera B., Del Valle G. et al. A second locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 19q13.3. Am J Hum Genet 2001; 68: 269–274. PMID: 11112660.
  91. Guernsey D.L., Jiang H., Bedard K. et al. Mutation in the gene encoding ubiquitin ligase LRSAM1 in patients with Charcot–Marie–Tooth disease. PLoS Genet 2010; 6; pii: e1001081. doi: 10.1371/journal.pgen.1001081. PMID: 20865121.
  92. Schottmann G., Jungbluth H., Schara U. et al. Recessive truncating IGHMBP2 mutations presenting as axonal sensorimotor neuropathy. Neurology 2015; 84: 523–531. doi: 10.1212/WNL.0000000000001220. PMID: 25568292.
  93. Ylikallio E., Pöyhönen R., Zimon M. et al. Deficiency of the E3 ubiquitin ligase TRIM2 in early-onset axonal neuropathy. Hum Mol Genet 2013; 22: 2975–2983. doi: 10.1093/hmg/ddt149. PMID: 23562820.
  94. Dadali E.L., Sharkova I.V., Nikitin S.S., Konovalov F.A. [New allelic variant of autosomal recessive hereditary motor and sensory neuropathy type 2S resulted from mutations in gene IGHMBP2]. Nervno-myshechnye bolezni 2016; 6(2): 52–57. doi: 10.17650/2222-8721-2016-6-2-52-57. (In Russ.)
  95. Tan C.A., Rabideau M., Blevins A. et al. Autosomal recessive MFN2-related Charcot–Marie–Tooth disease with diaphragmatic weakness: Case report and literature review. Am J Med Genet A 2016; 170: 1580–1584. doi: 10.1002/ajmg.a.37611. PMID: 26955893.
  96. Barhoumi C., Amouri R., Ben Hamida C. et al. Linkage of a new locus for autosomal recessive axonal form of Charcot–Marie–Tooth disease to chromosome 8q21.3. Neuromuscul Disord 2001; 11: 27–34. PMID: 11166163.
  97. Ylikallio E., Woldegebriel R., Tumiati M. et al. MCM3AP in recessive Charcot–Marie–Tooth neuropathy and mild intellectual disability. Brain 2017; 140: 2093–2103. doi: 10.1093/brain/awx138. PMID: 28633435.
  98. Kim H.J., Hong Y.B., Park J-M. et al. Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot–Marie–Tooth disease. Orph J Rare Dis 2013; 8: 104. doi: 10.1186/1750-1172-8-104. PMID: 23844677.
  99. Lassuthova P., Brozkova D.S., Krutova M. et al. Mutations in HINT1 are one of the most frequent causes of hereditary neuropathy among Czech patients and neuromyotonia is rather an underdiagnosed symptom. Neurogenetics 2015; 16: 43–54. doi: 10.1007/s10048-014-0427-8. PMID: 25342199.
  100. Dadali E.L., Nikitin S.S., Kurbatov S.A. et al. [Clinical and genetic characteristics of autosomal recessive axonal neuropathy with neuromyotonia in Russian patients]. Nervno-myshechnye bolezni 2017; 7(3): 47–55. doi: 10.17650/2222-8721-2017-7-3-47-55. (In Russ.)
  101. Zimoń M., Baets J., Almeida-Souza L. et al. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nat Genet 2012; 44: 1080–1083. doi: 10.1038/ng.2406. PMID: 22961002.
  102. Auer-Grumbach M. Hereditary sensory and autonomic neuropathies. Handb Clin Neurol 2013; 115: 893–906. doi: 10.1016/B978-0-444-52902-2.00050-3. PMID: 23931820.
  103. Dietrich P., Dragatsis I. Familial dysautonomia: mechanisms and models. Genet Mol Biol 2016; 39: 497–514. doi: 10.1590/1678-4685-GMB-2015-0335. PMID: 27561110.
  104. Shchagina O.A., Milovidova T.B., Bulakh M.V., Polyakov A.V. [The study of autosomal recessive CMT-disease with using a new medical technologies «One tube detection system for most common recessive CMT-mutation»]. Meditsinskaya genetika 2016; 15(3): 35–39. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Murtazina A.F., Shchagina O.A., Nikitin S.S., Dadali E.L., Polyakov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies