The effect of transcranial direct current stimulation on the short-term spatial memory in healthy volunteers

Cover Page

Abstract

Introduction. Transcranial direct current stimulation (tDCS) is a method of non-invasive brain stimulation. The application of a weak, subthreshold direct current on the cerebral cortex leads to a change in cortical neuron activity, which continues for a certain amount of time after exposure. The main mechanism of this effect is subthreshold changes in the membrane potential, while the after-effect phenomenon is associated with the influence of tDCS on synaptic plasticity.

Study objective. To examine the effect of tDCS of the posterior parietal cortex on certain types of spatial memory with the electrodes positioned P3– P4+ and P3+ P4–.

Materials and methods. The study included 18 healthy volunteers (10 men and 8 women) aged 18–23 years. The experiment used stimulation points P3 and P4 according to the 10–20 international electrode positioning system. Stimulation was performed using a direct current of 0.7 mA for 20 min. The study participants underwent three stimulation sessions (P3– P4+, P3+ P4–, P30 P40) in a randomized order with an interval of 3 days between them. After each session, the state of their short-term spatial memory was assessed using the Spatial Memory (categorical spatial memory) and Spatial Span (coordinate spatial memory) tests by Cambridge Brain Sciences, as well as the subjective effect of tDCS.

Results. There were no statistically significant differences in the results of neuropsychological tests between ‘active’ stimulation (P3– P4+ and P3+ P4–) and sham stimulation. The lack of effect may be due to the use of insufficient current (0.7 mA) or other factors (duty cycle, electrode location, stimulation time, etc.). No adverse effects of stimulation were reported.

Conclusion. tDCS with 0.7 mA current does not affect spatial memory in healthy people when using P3– P4+ and P3+ P4– electrode mountings.

About the authors

Vladislav M. Kislitskiy

Amur State Medical Academy

Author for correspondence.
Email: vlad_kisli@mail.ru
Russian Federation, Blagoveshchensk

Ekaterina A. Yatsenko

Amur State Medical Academy

Email: vlad_kisli@mail.ru
Russian Federation, Blagoveshchensk

Anton A. Yatsenko

Amur State Medical Academy

Email: vlad_kisli@mail.ru
Russian Federation, Blagoveshchensk

Vladimir A. Kushnarev

N.N. Petrov National Medical Research Centre of Oncology

Email: vlad_kisli@mail.ru
Russian Federation, Blagoveshchensk

Mikhail S. Pomazkov

National Research Tomsk Polytechnic University

Email: vlad_kisli@mail.ru
Russian Federation, Tomsk

References

  1. Bindman L.J., Lippold O., Redfearn J. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 1964; 172: 369–382. PMIID: 14199369.
  2. Nitsche M.A., Liebetanz D., Antal A. et al. Modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects. Suppl Clin Neurophysiol 2003; 56: 255–276. PMID: 14677403.
  3. Purpura D.P., McMurtry J.G. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 1965; 28: 166–185. PMID: 14244793.
  4. Nitsche M.A., Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001; 57: 1899–1901. PMID: 11723286.
  5. Fertonani A., Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist 2017; 23: 109–123. doi: 10.1177/1073858416631966. PMID: 26873962.
  6. Liebetanz D., Nitsche M.A., Tergau F., Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002; 125: 2238–2247. PMID: 12244081.
  7. Nitsche M.A., Fricke K., Henschke U. et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003; 553: 293–301. PMID: 12949224.
  8. Coffman B.A., Clarck V.P., Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage 2014; 85: 895–908. doi: 10.1016/j.neuroimage.2013.07.083. PMID: 23933040.
  9. Kuo M.F., Nitsche M.A. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci 2012; 43: 192–199. doi: 10.1177/1550059412444975. PMID: 22956647.
  10. Kuo M.F., Paulus W., Nitsche M.A. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage 2014; 85: 948–960. doi: 10.1016/j.neuroimage.2013.05.117. PMID: 23747962.
  11. Flöel A. tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 2014; 85: 934–994. doi: 10.1016/j.neuroimage.2013.05.098. PMID: 23727025.
  12. Brunoni A.R., Kemp A.H., Shiozawa P. et al. Impact of 5-HTTLPR and BDNF polymorphisms on response to sertraline versus transcranial direct current stimulation: implications for the serotonergic system. Eur Neuropsychopharmacol 2013; 23: 1530–1540. doi: 10.1016/j.euroneuro.2013.03.009. PMID: 23615118.
  13. Göder R., Baier P.C., Beith B. et al. Effects of transcranial direct current stimulation during sleep on memory performance in patients with schizophrenia. Schizophr Res 2013; 144: 153–154. doi: 10.1016/j.schres.2012.12.014. PMID: 23336963.
  14. Boggio P.S., Ferrucci R., Mameli F. et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul 2012; 5: 223–230. doi: 10.1016/j.brs.2011.06.006. PMID: 21840288.
  15. Cotelli M., Manenti R., Brambilla M. et al. Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Front Aging Neurosci 2014; 6: 38. doi: 10.3389/fnagi.2014.00038. PMID: 24678298.
  16. Hampstead B.M., Stringer A.Y., Stilla R.F. et al. Where did I put that? Patients with amnestic mild cognitive impairment demonstrate widespread reductions in activity during the encoding of ecologically relevant object-location associations. Neuropsychologia 2011; 49: 2349–2361. doi: 10.1016/j.neuropsychologia.2011.04.008. PMID: 21530556.
  17. Postma A., De Haan E.H. What was where? Memory for object locations. Q J Exp Psychol 1996; 49: 178–199. PMID: 8920102.
  18. Kessels R.P., de Haan E.H., Kappelle L.J., Postma A. Selective impairments in spatial memory after ischaemic stroke. J Clin Exp Neuropsychol 2002; 24: 115–129. doi: 10.1076/jcen.24.1.115.967. PMID: 11935430.
  19. Postma A., Kessels R., Van Asselen M. How the brain remembers and forgets where things are: the neurocognition of object-location memory. Neurosci Biobehav Rev 2008; 32: 1339–1345. doi: 10.1016/j.neubiorev.2008.05.001. PMID: 18562002.
  20. England H.B., Fyock C., Meredith Gillis M., Hampstead B.M. Transcranial direct current stimulation modulates spatial memory in cognitively intact adults. Behav Brain Res 2015; 283: 191–195. doi: 10.1016/j.bbr.2015.01.044. PMID: 25647757.
  21. Kosslyn S.M. Seeing and imagining in the cerebral hemispheres: a computational approach. Psychol Rev 1987; 94: 148–175. PMID: 3575583.
  22. van der Ham I.J., Raemaekers M., van Wezel R.J. et al. Categorical and coordinate spatial relations in working memory: an fMRI study. Brain Res 2009; 1297: 70–79. doi: 10.1016/j.brainres.2009.07.088. PMID: 19651111.
  23. Trojano L., Conson M., Maffei R., Grossi D. Categorical and coordinate spatial processing in the imagery domain investigated by rTMS. Neuropsychologia 2006; 44: 1569–1574. doi: 10.1016/j.neuropsychologia.2006.01.017. PMID: 16529780.
  24. Medina J., Beauvais J., Datta A. et al. Transcranial direct current stimulation accelerates allocentric target detection. Brain Stimul 2013; 6: 433–439. doi: 10.1016/j.brs.2012.05.008. PMID: 22784444.
  25. Woods A.J., Antal A., Bikson M. et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 2016; 127: 1031–1048. doi: 10.1016/j.clinph.2015.11.012. PMID: 26652115.

Statistics

Views

Abstract: 1080

PDF (Russian): 705

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2019 Kislitskiy V.M., Yatsenko E.A., Yatsenko A.A., Kushnarev V.A., Pomazkov M.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies