Molecular expression of insulin signal transduction components in brain cells in an experimental model of Alzheimer’s disease

Cover Page

Abstract

Introduction. The risk of Alzheimer’s disease (AD) is increased with cerebral insulin resistance, which may be caused by the impaired function of the cerebrovascular system, and may also have a direct effect on β-amyloid aggregation and Tau protein phosphorylation.

Aim. To study the molecular expression of insulin signal transduction components (IRS1, GSK3B and PKC) in the brain cells in an experimental model of AD.

Materials and methods. Experiments were conducted on 4-month-old C57BL/6 and B6.129S6-Nlrp3tm1Bhk/JJ male mice (NLRP3 knockout mice) with 5 animals in each group. AD was modelled in the experimental group of mice by administering β-amyloid; mice in the control group received sham surgery. IRS1, GSK3B and PKC expression in the amygdala was studied using immunohistochemistry methods.

Results. The C57BL/6 mice with AD had reduced IRS1 expression compared with the mice who received sham surgery (0.62±0.13 and 0.89±0.17; р=0.045), while the β-amyloid did not produce the same result in NLRP3 knockout mice. GSK3B expression was increased in C57BL/6 mice with AD (0.60±0.12) when compared with both the control group (0.20±0.02; p<0.0001) and the NLRP3 knockout mice with AD (0.27±0.08; p<0.0001). PKC expression in C57BL/6 mice with AD was reduced (0.52±0.14) when compared with the NLRP3 knockout mice with AD (0.89±0.18; p<0.05) and the control group (0.84±0.12; p<0.05).

Conclusion. The development of Alzheimer type-neurodegeneration is accompanied by disruptions in IRS1 and GSK3B expression, which is associated with impaired signal transmission along the PKC pathway. The suppression of neuroinflammation through NLRP3 inflammasome deletion has a protective effect in AD.

 

About the authors

Yana V. Gorina

Voyno-Yasenetsky Krasnoyarsk State Medical University

Author for correspondence.
Email: yana_20@bk.ru
Russian Federation, Krasnoyarsk

Yuliya K. Komleva

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: yana_20@bk.ru
Russian Federation, Krasnoyarsk

Olga L. Lopatina

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: yana_20@bk.ru
Russian Federation, Krasnoyarsk

Anatolii I. Chernykh

Krasnoyarsk City Hospital No. 20 named after I.S. Berzon

Email: yana_20@bk.ru
Russian Federation, Krasnoyarsk

Alla B. Salmina

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: yana_20@bk.ru
Russian Federation, Krasnoyarsk

References

  1. Xu J., Murphy S.L., Kochanek K.D., Bastian B.A. Deaths: Final Data for 2013. Natl Vital Stat Rep 2016; 64: 100–119. PMID: 26905861.
  2. Reitz C., Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88: 640–651. doi: 10.1016/j.bcp.2013.12.024. PMID: 24398425.
  3. Cai Z., Zhao B., Ratka A. Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromo Med 2011; 13: 223–250. doi: 10.1007/s12017-011-8155-9. PMID: 21901428.
  4. Ferrer I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog Neurobiol 2012; 97: 38–51. doi: 10.1016/j.pneurobio.2012.03.005. PMID: 22459297.
  5. Lutz M.W., Crenshaw D., Welsh-Bohmer K.A. et al. New genetic approaches to AD: lessons from APOE-TOMM40 Phylogenetics Curr Neurol Neurosci Rep 2016; 16: 48. doi: 10.1007/s11910-016-0643-8. PMID: 27039903.
  6. Crane P.K., Walker R., Hubbard R.A. et al. Glucose levels and risk of dementia. N Engl J Med 2013; 369: 540–548. doi: 10.1056/NEJMoa1215740. PMID: 24195564.
  7. Ikram M.A., Brusselle G.G.O., Murad S.D. et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol 2017; 32: 807–850. doi: 10.1007/s10654-338 017-0321-4. PMID: 29064009.
  8. Talbot K., Wang H., Kazi H. et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012; 122: 1316–1338. doi: 10.1172/JCI59903. PMID: 22476197.
  9. De Felice F.G. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 2013; 123: 23485579. doi: 10.1172/JCI64595. PMID: 23485579.
  10. Boles A., Kandimalla R., Reddy P.H. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 1026–1036. doi: 10.1016/j.bbadis.2017.01.016. PMID: 28130199.
  11. Kleinridders A., Ferris H.A., Cai W., Kahn C.R. Insulin action in brain regulates systemic metabolism and brain function. Diabetes 2014; 63: 2232–2243. doi: 10.2337/db14-0568. PMID: 24931034.
  12. Akintola A.A., van Opstal A.M., Westendorp R.G. et al. Effect of intranasally administered insulin on cerebral blood flow and perfusion; a randomized experiment in young and older adults. Aging (Albany NY) 2017; 9: 790–802. doi: 10.18632/aging.101192. PMID: 28291957.
  13. Schmitz L., Kuglin R., Bae-Gartz I. et al. Hippocampal insulin resistance links maternal obesity with impaired neuronal plasticity in adult offspring. Psychoneuroendocrinology 2018; 89: 46–52. doi: 10.1016/j.psyneuen.2017.12.023. PMID: 29324300.
  14. Park C.R., Seeley R.J., Craft S., Woods S.C. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 2000; 68: 509–514. doi: 10.1016/S0031-9384(99)00220-6. PMID: 10713291.
  15. Macklin L., Griffith C.M., Cai Y. et al. Glucose tolerance and insulin sensitivity are impaired in APP/PS1 transgenic mice prior to amyloid plaque pathogenesis and cognitive decline. Exp Gerontol 2017; 88: 9–18. doi: 10.1016/j.exger.2016.12.019. PMID: 28025127.
  16. Batista A.F., Forny-Germano L., Clarke J.R. et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J Pathol 2018; 245: 85–100. doi: 10.1002/path.5056. PMID: 29435980.
  17. De Felice F., Vieira N.N.M., Bomfim T. et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci 2009; 106: 1971–1976. doi: 10.1073/pnas.0901917106. PMID: 19188609.
  18. Ma Q.-L., Yang F., Rosario E.R. et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 2009; 29: 9078–9089. doi: 10.1523/JNEUROSCI.1071-09.2009. PMID: 19605645.
  19. Steen E., Terry B.M., Rivera E.J. et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease — is this type 3 diabetes? J Alzheimer’s Dis 2005; 7: 63–80. doi: 10.3233/JAD-2005-7107. PMID: 15750215.
  20. Bomfim T.R., Forny-Germano L., Sathler L.B. et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 2012; 122: 1339–1353. doi: 10.1172/JCI57256DS1. PMID: 22476196.
  21. Epelbaum S., Youssef I., Lacor P.N. et al. Acute amnestic encephalopathy in amyloid-β oligomer-injected mice is due to their widespread diffusion in vivo. Neurobiol Aging 2015; 36: 2043–2052. doi: 10.1016/j.neurobiolaging.2015.03.005. PMID: 25862419.
  22. Sipos E., Kurunczi A., Kasza A. et al. Beta-amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer's disease. Neuroscience 2007; 147: 28–36. doi: 10.1016/j.neuroscience.2007.04.011. PMID: 17499931.
  23. Komleva Yu.A., Malinovskaya N.A., Gorina Ya.V. et al. [Expression of CD38 and CD157 molecules in olfactory bulbs of brain in experimental Alzheimer's disease]. Sibirskoe meditsinskoe obozrenie 2015; 5: 45–49. (In Russ.).
  24. Encinas J.M., Enikolopov G. Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol 2008; 85: 243–272. doi: 10.1016/s0091-679x(08)85011-x. PMID: 18155466.
  25. Ott A., Stolk R.P., van Harskamp F. et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999; 53: 1937–1942. doi: 10.1212/WNL.53.9.1937. PMID: 10599761.
  26. Kurochkin I.V., Guarnera E., Berezovsky I. N. Insulin-degrading enzyme in the fight against Alzheimer's disease. Trends Pharmacol Sci 2018; 39: 49–58. doi: 10.1016/j.tips.2017.10.008. PMID: 29132916.
  27. Gray S.M., Meijer R.I., Barrett E.J. Insulin regulates brain function, but how does it get there? Diabetes 2014; 63: 3992–3997. doi: 10.2337/db14-0340. PMID: 25414013.
  28. Sadagurski M., Dong X.C., Myers M.G. Jr., White M.F. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol Metab 2014; 3: 55–63. doi: 10.1016/j.molmet.2013.10.004. PMID: 24567904.
  29. Hubbard S.R. Structure and mechanism of the insulin receptor tyrosine kinase. In: Bradshaw R.A., Dennis E.A. (eds.) Handbook of Cell Signaling. N.Y.: Academic Press, 2009: 307–313. doi: 10.1016/B978-0-12-374145-5.X0001-0.
  30. Hale L.J., Coward R.J. Insulin signalling to the kidney in health and disease. Clin Sci (Lond) 2013; 124: 351–370. doi: 10.1042/CS20120378. PMID: 23190266.
  31. Kapogiannis D., Boxer A., Schwartz J.B. et al. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer's disease. FASEB J 2015; 29: 589–596. doi: 10.1096/fj.14-262048. PMID: 25342129.
  32. Andreozzi F., Laratta E., Sciacqua A. et al. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 2004; 94: 1211–1218. doi: 10.1161/01.RES.0000126501.34994.96. PMID: 15044323.
  33. Pederson T.M., Kramer D.L., Rondinone C.M. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes 2001; 50: 24–31. doi: 10.2337/diabetes.50.1.24. PMID: 11147790.
  34. Gual P., Le Marchand-Brustel Y., Tanti J.F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005; 87: 99–109. doi: 10.1016/j.biochi.2004.10.019. PMID: 15733744.
  35. Woodgett J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 1990; 9: 2431–2438. PMID: 2164470.
  36. Cho J.H., Johnson G.V. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J Neurochem 2004; 88: 349–358. doi: 10.1111/j.1471-4159.2004.02155.x. PMID: 14690523.
  37. Takahashi M., Tomizawa K., Kato R. et al. Localization and developmental changes of tau protein kinase I/glycogen synthase kinase-3 beta in rat brain. J Neurochem 1994; 63: 245–255. doi: 10.1046/j.1471-4159.1994.63010245.x. PMID: 7515946.
  38. Lahmy V., Meunier J., Malmström S. et al. Blockade of tau hyperphosphorylation and Aβ 1−42 generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and σ 1 receptor agonist, in a nontransgenic mouse model of Alzheimer's disease. Neuropsychopharmacology 2013; 38: 1706–1723. doi: 10.1038/npp.2013.70. PMID: 23493042.
  39. Hernandez F., Lucas J.J., Avila J. GSK3 and tau: two convergence points in Alzheimer's disease. Journal of Alzheimer's disease. J Alzheimers Dis 2013; 33 Suppl 1: S141–S144. doi: 10.3233/JAD-2012-129025. PMID: 22710914.
  40. Tramutola A., Triplett J. C., Di Domenico F. et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 2015; 133:739–749. doi: 10.1111/jnc.13037. PMID: 25645581.
  41. Griffin R. J., Moloney A., Kelliher M. et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 2005; 93: 105–117. doi: 10.1111/j.1471-4159.2004.02949.x. PMID: 15773910.
  42. Lovestone S., Boada M., Dubois B. et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimer’s Dis 2015; 45: 75–88. doi: 10.3233/JAD-141959. PMID: 25537011.
  43. Xu Z.-P., Yang S.-L., Zhao S. et al. Biomarkers for early diagnostic of mild cognitive impairment in type-2 diabetes patients: a multicentre, retrospective, nested case–control study. EBioMedicine 2016; 5: 105–113. doi: 10.1016/j.ebiom.2016.02.014. PMID: 27077117.
  44. Maqbool M., Hoda N. GSK3 inhibitors in the therapeutic development of diabetes, cancer and Neurodegeneration: Past, present and future. Curr Pharm Des 2017; 23: 4332–4350. doi: 10.2174/1381612823666170714141450. PMID: 28714403.
  45. Zhang Y., Zhang Z., Wang H. et al. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3beta pathway. Mol Med Rep 2016; 14: 2778–2784. doi: 10.3892/mmr.2016.5556. PMID: 27485139.
  46. Lucke-Wold B.P., Turner R.C., Logsdon A.F. et al. Common mechanisms of Alzheimer’s disease and ischemic stroke: the role of protein kinase C in the progression of age-related neurodegeneration. J Alzheimer’s Dis 2015; 43, 711–24. doi: 10.3233/JAD-141422. PMID: 25114088.
  47. Nelson T.J., Sun M.K., Hongpaisan J., Alkon D.L. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 2008; 585: 76–87. doi: 10.1016/j.ejphar.2008.01.051. PMID: 18402935.
  48. Alkon D.L., Sun M.-K., Nelson T.J. PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer’s disease. Trends Pharmacol Sci 2007; 28: 51–60. doi: 10.1016/j.tips.2006.12.002. PMID: 17218018.
  49. Garrido J.L., Godoy J.A., Alvarez A. et al. Protein kinase C inhibits amyloid beta peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J 2002; 16: 1982–1984. doi: 10.1096/fj.02-0327fje. PMID: 12397090.
  50. Isagawa T., Mukai H., Oishi K. et al. Dual effects of PKNalpha and protein kinase C on phosphorylation of tau protein by glycogen synthase kinase-3beta. Biochem Biophys Res Commun 2000; 273: 209–212. doi: 10.1006/bbrc.2000.2926. PMID: 10873588.
  51. Etcheberrigaray R., Tan M., Dewachter I. et al. Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci USA 2004; 101: 11141–11146. doi: 10.1073/pnas.0403921101. PMID: 15263077.
  52. Nawaratne R., Gray A., Jørgensen C.H. et al. Regulation of insulin receptor substrate 1 pleckstrin homology domain by protein kinase C: role of serine 24 phosphorylation. Mol Endocrinol 2006; 20: 1838–1852. doi: 10.1210/me.2005-0536. PMID: 16574739.
  53. Taniguchi C.M., Emanuelli B., Kahn C.R. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85–96. doi: 10.1038/nrm1837. PMID: 16493415.
  54. Ito-Ishida A., Kakegawa W., Yuzaki M. ERK1/2 but not p38 MAP kinase is essential for the long-term depression in mouse cerebellar slices. Eur J Neurosci 2006; 24: 1617–1622. doi: 10.1111/j.1460-9568.2006.05055.x. PMID: 17004925.
  55. Nelson T.J., Backlund Jr P.S., Alkon D.L. Hippocampal protein-protein interactions in spatial memory. Hippocampus 2004; 14: 46–57. doi: 10.1002/hipo.10152. PMID: 15058482.
  56. Hongpaisan J., Alkon D.L. A structural basis for enhancement of longterm associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci USA 2007; 104: 19571–19576. doi: 10.1073/pnas.0709311104. PMID: 18073185.

Statistics

Views

Abstract: 948

PDF (Russian): 617

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2019 Gorina Y.V., Komleva Y.K., Lopatina O.L., Chernykh A.I., Salmina A.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies