Changes in the morphofunctional development of the neuronal network in a dissociated cell culture of rat cerebral cortical neurons

Cover Page

Cite item

Full Text


Introduction. Study of the morphofunctional neuronal development in a dissociated cerebrocortical cell culture, using modern cell technologies, is a priority in experimental neurology, which is required for successful in vitro modelling of acute and chronic forms of cerebral pathology.

Aim. A morphofunctional study of the in vitro changes in neuronal differentiation of rat cerebral cortical neurons, using a range of analysis methods, including immunohistochemistry, fluorescence, and electrophysiology.

Materials and methods. We investigated the degree of culture differentiation on day 3–4 and day 10–11 of in vitro cultivation, measured by the intensity of the PSA-NCAM protein expression and the level of neuronal glutamate-induced calcium overload. That was then compared with the functional activity of the neuronal network cultivated on a microelectrode array, and with changes of the neuronal network’s activity in response to glutamate receptor overstimulation.

Results. A significant glutamate-induced increase of the intracellular calcium concentration was typical for mature neurons (day 10–11 of cultivation), along with a lack of PSA-NCAM paranuclear accumulation, which was only found in immature cells (day 3–4 of cultivation). There was a glutamate suppression of the neuronal network burst activity, formed in vitro by day 10–11, with had no effect on the generation of single action potentials. At the same time, kainate, the exogenous selective agonist of the one of the glutamate subtypes, completely blocked spontaneous activity of the mature neurons.

Conclusion. Neocortical rat neurons reach the differentiation level necessary for the modelling of the cerebral pathologies by day 10–11 of in vitro cultivation. At this point, the process of disruption of the microelectrode array cultivated neuronal network by the glutamate receptor overactivation, has become multilayered: excitotoxic glutamate-induced damage produces selective disruption of neuronal burst activity, and with the greater cytotoxicity caused by kainate, spontaneous bioelectrical activity is completely blocked.

About the authors

Elizaveta E. Genrikhs

Research Center of Neurology

Russian Federation, Moscow

Olga P. Aleksandrova

Research Center of Neurology

Russian Federation, Moscow

Elena V. Stelmashuk

Research Center of Neurology

Russian Federation, Moscow

Svetlana V. Novikova

Research Center of Neurology

Russian Federation, Moscow

Dmitriy N. Voronkov

Research Center of Neurology

Russian Federation, Moscow

Nikolay K. Isaev

Research Center of Neurology;M.V.Lomonosov Moscow State University

Russian Federation, Moscow

Leonid G. Khaspekov

Research Center of Neurology

Author for correspondence.
Russian Federation, Moscow


  1. Zhu C., Qiu L., Wang X. et al. Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem 2003; 86: 306–317. doi: 10.1046/j.1471-4159.2003.01832.x. PMID: 12871572.
  2. Stelmashuk E.V., Belyaeva E.A., Isaev N.K. Effect of acidosis, oxidative stress, and glutamate toxicity on the survival of mature and immature cultured cerebellar granule cells. Neurochem J 2007; 1: 66–69. doi: 10.1134/S1819712407010084.
  3. Han Y., Zhu H., Zhao Y. et al. The effect of acute glutamate treatment on the functional connectivity and network topology of cortical cultures. Med Eng Phys 2019; 71: 91–97. doi: 10.1016/j.medengphy.2019.07.007. PMID: 31311692.
  4. Westphal N., Loers G., Lutz D. et al. Generation and intracellular trafficking of a polysialic acid-carrying fragment of the neural cell adhesion molecule NCAM to the cell nucleus. Sci Rep 2017; 7: 8622. doi: 10.1038/s41598-017-09468-8. PMID: 28819302.
  5. Nicholls D.G., Brand M.D., Gerencser A.A. Mitochondrial bioenergetics and neuronal survival modelled in primary neuronal culture and isolated nerve terminals. J Neurosci Res 2007; 85: 3206–3212. doi: 10.1007/s10863-014-9573-9. PMID: 25172197
  6. Keller J.M., Frega M. Past, present, and future of neuronal models in vitro. Adv Neurobiol 2019; 22: 3–17. doi: 10.1007/978-3-030-11135-9_1. PMID: 31073930.
  7. Mukhina I.V., Khaspekov L.G. [New technologies in experimental neurobiology: neuronal networks on multielectrode array]. Annals of clinical and experimental neurology 2010; 4(2): 44–51. (In Russ.)
  8. Hilgenberg L.G., Smith M.A. Preparation of dissociated mouse cortical neuron cultures. J Vis Exp 2007; (10): 562. doi: 10.3791/562. PMID: 18989405.
  9. Lozier E.R., Dzhanibekova A.I., Stelmashuk E.V. et al. Glucose deprivation potentiates toxicity of ouabain and glutamate in cortical neurons cultured for different time periods. Neurochem J 2009; 3: 202–206. doi: 10.1134/S1819712409030088.
  10. Kapkaeva M.R., Popova O.V., Kondratenko R.V. et al. Effects of copper on viability and functional properties of hippocampal neurons in vitro. Exp Toxicol Pathol 2017; 69: 259-264. doi: 10.1016/j.etp.2017.01.011. PMID: 28189473.
  11. Isaev N.K., Stelmashook E.V., Ruscher K. et al. Menadione reduces rotenone-induced cell death in cerebellar granule neurons. Neuroreport 2004; 15: 2227–2231. doi: 10.1097/00001756-200410050-00017. PMID: 15371739.
  12. Voronkov D.N., Stavrovskaya A.V., Stelmashook E.V. et al. Neurodegenerative changes in rat brain in streptozotocin model of Alzheimer's disease. Bull Exp Biol Med 2019; 166: 793–796. doi: 10.1007/s10517-019-04442-y. PMID: 31028587.
  13. Gee K.R., Brown K.A., Chen W.N. et al. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 2000; 27(2): 97–106. doi: 10.1054/ceca. 1999.0095. PMID: 10756976.
  14. Stel'mashuk E.V., Novikova S.V. Amel'kina G.A. et al. The mechanism of the neurocytotoxic effect of the Na+/H+ exchange inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) in the rat cerebellum cultured granule neurons. Neurochemical J 2014; 8: 121–124.
  15. Dichter M.A. Rat cortical neurons in cell culture: сulture methods, cell morphology, electrophysiology, and synapse fomation. Brain Res 1978; 149: 279–293. doi: 10.1016/0006-8993(78)90476-6. PMID: 27283.
  16. Goldberg M.P., Choi D.W. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 1993; 13: 3510–3524. PMID: 8101871.
  17. Dawson V.L., Kizushi V.M., Huang P.L. et al. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 1996; 16: 2479–2487. PMID: 8786424.
  18. Voigt T., Baier H., Dolabela de Lima A. Synchronization of neuronal activity promotes survival of individual rat neocortical neurons in early development. Eur J Neurosci 1997; 9: 990–999. doi: 10.1111/j.1460-9568.1997.tb01449.x. PMID: 9182951.
  19. Shirakawa H., Katsuki H., Kume T. et al. Aminoglutethimide prevents excitotoxic and ischemic injuries in cortical neurons. Br J Pharmacol 2006; 147(7): 729–736. doi: 10.1038/sj.bjp.0706636. PMID: 16474421.
  20. Johnson H.A., Buonomano D.V. Development and plasticity of spontaneous activity and Up states in cortical organotypic slices. J Neurosci 2007; 27(22): 5915–5925. doi: 10.1523/JNEUROSCI.0447-07.2007. PMID: 17537962.
  21. van Huizen F., Romijn H.J., Habets A.M., van den Hooff P. Accelerated neural network formation in rat cerebral cortex cultures chronically disinhibited with picrotoxin. Exp Neurol 1987; 97: 280–288. doi: 10.1016/0014-4886(87)90089-6. PMID: 3609212.
  22. Tojima T., Ito E. Bimodal effects of acetylcholine on synchronized calcium oscillation in rat cultured cortical neurons. Neurosci Lett 2000; 287: 179–182. doi: 10.1016/s0304-3940(00)01149-6. PMID: 10863024.
  23. Schonfeld-Dado E., Fishbein I., Segal M. Degeneration of cultured cortical neurons following prolonged inactivation: molecular mechanisms. J Neurochem 2009; 110: 1203–1213. doi: 10.1111/j.1471-4159.2009.06204.x. PMID: 19508430.
  24. Tateno T., Jimbo Y., Robinson H.P. Spatio-temporal cholinergic modulation in cultured networks of rat cortical neurons: spontaneous activity. Neuroscience 2005; 134: 425–437. doi: 10.1016/j.neuroscience.2005.04.049. PMID: 15993003.
  25. Charlesworth P., Cotterill E., Morton A. et al. Quantitative differences in developmental profiles of spontaneous activity in cortical and hippocampal cultures. Neural Dev 2015; 10: 1–10. doi: 10.1186/s13064-014-0028-0. PMID: 25626996.
  26. Rubio A., Belles M., Belenguer G. et al. Characterization and isolation of immature neurons of the adult mouse piriform cortex. Dev Neurobiol 2016; 76: 748–763. doi: 10.1002/dneu.22357. PMID: 26487449.
  27. Isaev N.K., Genrikhs E.E., Voronkov D.N. et al. Streptozotocin toxicity in vitro depends on maturity of neurons. Toxicol Appl Pharmacol 2018; 340: 99–104. DOI: 10.1016/ j.taap. 2018. 04.024. PMID: 29684395.
  28. Martinoia S., Bonzano L., Chiappalone M. et al. In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications. Biosens Bioelectron 2005; 20(10): 2071–2078. doi: 10.1016/j.bios.2004.09.012. PMID: 15741077.
  29. Cotterill E., Hall D., Wallace K. et al. Characterization of early cortical neural network development in multiwell microelectrode array plates. J Biomol Screen 2016; 21: 510–519. doi: 10.1177/1087057116640520. PMID: 27028607.
  30. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010; 460: 525–542. doi: 10.1007/s00424-010-0809-1. PMID: 20229265.

Supplementary files

Supplementary Files

Copyright (c) 2019 Genrikhs E.E., Aleksandrova O.P., Stelmashuk E.V., Novikova S.V., Voronkov D.N., Isaev N.K., Khaspekov L.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies