Group I metabotropic glutamate receptors (mGluR1/5) and neurodegenerative diseases

Cover Page

Abstract

This overview describes how group mGluR1/5 metabotropic glutamate receptors are involved in neurodegenerative diseases; it also touches upon their use as therapeutic targets in animal models. mGluR1/5 are primarily located on the neuronal postsynaptic membrane, where they communicate with two proteins, Gαq/11 and Homer, which, in turn, initiate several biochemical cascades. The Gαq/11 protein cascade includes Са2+ release from the endoplasmic reticulum (ER) through the inositol trisphosphate receptors (IP3R) and the activation of depot-controlled Са2+ entry. The Gαq/11 protein cascade also includes the production of diacylglycerol with subsequent activation of various protein kinases, which, in turn, provide influences on the genome. The Homer protein communicates directly with the NMDA receptors and Shank scaffold proteins, through which it regulates the activity of various protein kinases, including Akt and ERK1/2. The activation of mGluR1/5 triggers long-term depression of glutamatergic transmission through the endocytosis of AMPA receptors, caused by changes in the level of protein phosphorylation and genome activation.

It is thought that mGluR1/5 play an important role in the development of neurodegenerative diseases. In Alzheimer's disease, mGluR1/5 acts as a target for the β-amyloid peptide. mGluR1/5 antagonists have a neuroprotective effect in transgenic mice with Alzheimer's disease. The pathogenesis of Alzheimer's disease includes increased Са2+ release from the ER due to the pathological activity of mGluR1/5, as well as the influence of mutated presenilin on Са2+ homeostasis in the ER. At the same time, restoration of Са2+ levels in the ER is disrupted by the effect of presenilin on depot-activated Са2+ entry.

mGluR5 (but not mGluR1) is being studied as a potential therapeutic target in Parkinson's disease. Numerous studies on rodent and primate models of Parkinson's disease have demonstrated a significant antiparkinsonian effect when mGluR5 antagonists were used. It is thought that the neuroprotective mechanisms of action of mGluR5 antagonists involve limiting the increase in intracellular Са2+ by reducing IP3 and NMDA receptor activation. Huntington’s disease is related to a mutation in the HTT gene and the ability of the mutant huntingtin protein to sensitise IP3 and NMDA receptors, thus triggering Са2+ overload in the neurons. A neuroprotective effect in transgenic mice with Huntington’s disease was achieved by using positive allosteric modulators of mGluR5, capable of selectively activating cascades associated with the Homer protein and triggering Akt activation.

About the authors

Elena I. Solntseva

Research Center of Neurology, Moscow

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

Pavel D. Rogozin

Research Center of Neurology, Moscow

Email: platonova@neurology.ru
Russian Federation

Vladimir G. Skrebitsky

Research Center of Neurology, Moscow

Email: platonova@neurology.ru
Russian Federation

References

  1. Ribeiro F.M., Vieira L.B., Pires R.G. et al. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 2017; 115: 179–191. doi: 10.1016/j.phrs.2016.11.013. PMID: 27872019.
  2. Conn P.J., Battaglia G., Marino M.J., Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 2005; 6: 787–798. doi: 10.1038/nrn1763. PMID: 16276355.
  3. Perfilova V.N., Tyurenkov I.N. [Metabotropic glutamate receptors: structure, localization, functions]. Uspekhi fiziologicheskikh nauk 2016; 2: 98–112. (In Russ.)
  4. Masilamoni G.J., Smith Y. Metabotropic glutamate receptors: targets for neuroprotective therapies in Parkinson disease. Curr Opin Pharmacol 2018; 38: 72–80. doi: 10.1016/j.coph.2018.03.004. PMID: 29605730.
  5. Аrkhipov V.I., Kapralova M.V. [Metabotropic glutamate receptors as targets for new drug creation] Eksperimental'naya i klinicheskaya farmakologiya 2011; 10: 46–52. doi: 10.30906/0869-2092-2011-74-10-46-52. (In Russ.)
  6. Secondo A., Bagetta G., Amantea D. On the role of store-operated calcium entry in acute and chronic neurodegenerative diseases. Front Mol Neurosci 2018; 11: 87. doi: 10.3389/fnmol.2018.00087. PMID: 29623030.
  7. Tang T.S., Slow E., Lupu V. et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci USA 2005; 102: 2602–2607. doi: 10.1073/pnas.0409402102. PMID: 15695335.
  8. Rong R., Ahn J.Y., Huang H. et al. PI3 kinase enhancer-Homer complex couples mGluRI toPI3 kinase, preventing neuronal apoptosis. Nat Neurosci 2003; 6: 1153–1161. doi: 10.1038/nn1134. PMID: 14528310.
  9. Bruno V., Battaglia G., Copani A. et al. An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. Eur J Neurosci 2001; 13: 1469–1478. doi: 10.1046/j.0953-816x.2001.01541.x. PMID: 11328342.
  10. Wegierski T., Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 2018; 74:102–111. doi: 10.1016/j.ceca.2018.07.001. PMID: 30015245.
  11. Zhang H., Wu L., Pchitskaya E. et al. Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer's disease. J Neurosci 2015; 35: 13275–13286. doi: 10.1523/JNEUROSCI.1034-15.2015. PMID: 26424877.
  12. Lüscher C., Huber K.M. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 2010; 65: 445–459. doi: 10.1016/j.neuron.2010.01.016. PMID: 20188650.
  13. Gladding C.M., Fitzjohn S.M., Molnár E. Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev 2009; 61: 395–412. doi: 10.1124/pr.109.001735. PMID: 19926678.
  14. Ménard C., Quirion R. Group 1 metabotropic glutamate receptor function and its regulation of learning and memory in the aging brain. Front Pharmacol 2012; 3: 182. doi: 10.3389/fphar.2012.00182. PMID: 23091460.
  15. Mameli M., Balland B., Luján R., Lüscher C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 2007; 317(5837): 530–533. doi: 10.1126/science.1142365. PMID: 17656725.
  16. Jones O.D. Do group I metabotropic glutamate receptors mediate LTD? Neurobiol Learn Mem 2017; 138: 85–97. doi: 10.1016/j.nlm.2016.08.010. PMID: 27545442.
  17. Pick J.E., Ziff E.B. Regulation of AMPA receptor trafficking and exit from the endoplasmic reticulum. Mol Cell Neurosci 2018; 91: 3–9. doi: 10.1016/j.mcn.2018.03.004. PMID: 29545119.
  18. Rogozin P.D., Solntseva E.I., Skrebitsky V.G. [The sigma1 receptor agonist enhances long-term depression caused by activation of metabotropic glutamate receptors in rat hippocampal neurons]. Annals of clinical and experimental neurology 2018; 12(4): 57–61. doi: 10.25692/ACEN.2018.4.8. (In Russ.)
  19. Glenner G.G., Wong C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120: 885–890. doi: 10.1016/s0006-291x(84)80190-4. PMID: 6375662.
  20. Grundke-Iqbal I., Iqbal K., Tung Y.C. et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 3: 4913–4917. doi: 10.1073/pnas.83.13.4913. PMID: 3088567.
  21. Karch C.M., Goate A.M. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77: 43–51. doi: 10.1016/j.biopsych.2014.05.006. PMID: 24951455.
  22. Walsh D.M., Selkoe D.J. A beta oligomers − a decade of discovery. J Neurochem 2007; 101: 1172–1184. doi: 10.1111/j.1471-4159.2006.04426.x. PMID: 17286590.
  23. Lustbader J.W., Cirilli M., Lin C. et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 2004; 304: 448–452. doi: 10.1126/science.1091230. PMID: 15087549.
  24. Berridge M.J. Calcium regulation of neural rhythms, memory and Alzheimer’s disease. J Physiol 2014; 592: 281–293. doi: 10.1113/jphysiol.2013.257527. PMID: 23753528.
  25. Demuro A., Parker I., Stutzmann G.E. Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 2010; 285: 12463–12468. doi: 10.1074/jbc.R109.080895. PMID: 20212036.
  26. Blanchard B.J., Thomas V.L., Ingram V.M. Mechanism of membrane depolarization caused by the Alzheimer Abeta1-42 peptide. Biochem Biophys Res Commun 2002; 293: 1197–1203. doi: 10.1016/S0006-291X(02)00346-7. PMID: 12054502.
  27. Glass C.K., Saijo K., Winner B. et al. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140: 918–934. doi: 10.1016/j.cell.2010.02.016. PMID: 20303880.
  28. Guglielmotto M., Giliberto L., Tamagno E., Tabaton M. Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors. Front Aging Neurosci 2010; 2: 3. doi: 10.3389/neuro.24.003.2010. PMID: 20552043.
  29. Lacor P.N., Buniel M.C., Chang L. et al. Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 2004; 24: 10191–10200. doi: 10.1523/JNEUROSCI.3432-04.2004. PMID: 15537891.
  30. Hsieh H., Boehm J., Sato C. et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 2006; 52: 831–843. doi: 10.1016/j.neuron.2006.10.035. PMID: 17145504.
  31. Renner M., Lacor P.N., Velasco P.T. et al. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 2010; 66: 739–754. DOI: 0.1016/j.neuron.2010.04.029. PMID: 20547131.
  32. Chen X., Lin R., Chang L. et al. Enhancement of long-term depression by soluble amyloid beta protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3. Neuroscience 2013; 253: 435–443. doi: 10.1016/j.neuroscience.2013.08.054. PMID: 24012839.
  33. Shankar G.M., Li S., Mehta T.H. et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008; 14: 837–842. doi: 10.1038/nm1782. PMID: 18568035.
  34. Hamilton A., Zamponi G.W., Ferguson S.S. Glutamate receptors function as scaffolds for the regulation of beta-amyloid and cellular prion protein signaling complexes. Mol Brain 2015; 8: 18. doi: 10.1186/s13041-015-0107-0. PMID: 25888324.
  35. Um J.W., Kaufman A.C., Kostylev M. et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 2013; 79: 887–902. doi: 10.1016/j.neuron.2013.06.036. PMID: 24012003.
  36. Hamilton A., Vasefi M., Vander Tuin C. et al. Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an alzheimer disease mouse model. Cell Rep 2016; 15: 1859–1865. doi: 10.1016/j.celrep.2016.04.077. PMID: 27210751.
  37. Khachaturian Z.S. Calcium, membranes, aging, and Alzheimer's disease. Introduction and overview. Ann NY Acad Sci 1989; 568: 1–4. doi: 10.1111/j.1749-6632.1989.tb12485.x. PMID: 2629579.
  38. Briggs C.A., Chakroborty S., Stutzmann G.E. Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochem Biophys Res Commun 2017; 483: 988–997. doi: 10.1016/j.bbrc.2016.09.088. PMID: 27659710.
  39. Zeiger W., Vetrivel K.S., Buggia-Prévot V. et al. Ca2+ influx through store-operated Ca2+ channels reduces Alzheimer disease β-amyloid peptide secretion. J Biol Chem 2013; 288: 26955–26966. doi: 10.1074/jbc.M113.473355. PMID: 23902769.
  40. Del Prete D., Checler F., Chami M. Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener 2014; 9: 21. doi: 10.1186/1750-1326-9-21. PMID: 24902695.
  41. Duggan S.P., McCarthy J.V. Beyond γ-secretase activity: The multifunctional nature of presenilins in cell signalling pathways. Cell Signal 2016; 28: 1-11. doi: 10.1016/j.cellsig.2015.10.006. PMID: 26498858.
  42. Pannaccione A., Secondo A., Molinaro P. et al. A new concept: Aβ1-42 generates a hyperfunctional proteolytic NCX3 fragment that delays caspase-12 activation and neuronal death. J Neurosci 2012; 32: 10609-10617. doi: 10.1523/JNEUROSCI.6429-11.2012. PMID: 22855810.
  43. Nelson O., Supnet C., Tolia A. et al. Mutagenesis mapping of the presenilin 1 calcium leak conductance pore. J Biol Chem 2011; 286: 22339–22347. doi: 10.1074/jbc.M111.243063. PMID: 21531718.
  44. Green K.N., Demuro A., Akbari Y. et al. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 2008; 181: 1107–1116. doi: 10.1083/jcb.200706171. PMID: 18591429.
  45. Cheung K.H., Shineman D., Müller M. et al. Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58: 871–883. doi: 10.1016/j.neuron.2008.04.015. PMID: 18579078.
  46. Shilling D., Müller M., Takano H. et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis. J Neurosci 2014; 34: 6910–6923. doi: 10.1523/JNEUROSCI.5441-13.2014. PMID: 24828645.
  47. Stutzmann G.E., Smith I., Caccamo A. et al. Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer's mouse models. Ann N Y Acad Sci 2007; 1097: 265–277. doi: 10.1196/annals.1379.025. PMID: 17413028.
  48. Hayrapetyan V., Rybalchenko V., Rybalchenko N., Koulen P. The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 2008; 44: 507–518. doi: 10.1016/j.ceca.2008.03.004. PMID: 18440065.
  49. Stutzmann G.E., Smith I., Caccamo A. et al. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer's disease mice. J Neurosci 2006; 26: 5180–5189. doi: 10.1523/JNEUROSCI.0739-06.2006. PMID: 16687509.
  50. Chakroborty S., Briggs C., Miller M.B. et al. Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer's disease. PLoS One 2012; 7: e52056. doi: 10.1371/journal.pone.0052056. PMID: 23284867.
  51. Oulès B., Del Prete D., Greco B. et al. Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 2012; 32: 11820–11834. doi: 10.1523/JNEUROSCI.0875-12.2012. PMID: 22915123.
  52. Peng J., Liang G., Inan S. et al. Dantrolene ameliorates cognitive decline and neuropathology in Alzheimer triple transgenic mice. Neurosci Lett 2012; 516: 274–279. doi: 10.1016/j.neulet.2012.04.008. PMID: 22516463.
  53. Sun S., Zhang H., Liu J. et al. Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron 2014 82: 79–93. doi: 10.1016/j.neuron.2014.02.019. PMID: 24698269.
  54. Garcia-Alvarez G., Shetty M.S., Lu B. et al. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes. Front Behav Neurosci 2015; 9: 180. doi: 10.3389/fnbeh.2015.00180. PMID: 26236206 .
  55. Zhang H., Sun S., Wu L. et al. Store-operated calcium channel complex in postsynaptic spines: a new therapeutic target for Alzheimer's disease treatment. J Neurosci 2016; 36: 11837–11850. doi: 10.1523/JNEUROSCI.1188-16.2016. PMID: 27881772.
  56. Frisina P.G., Haroutunian V., Libow L.S. The neuropathological basis for depression in Parkinson’s disease. Parkinsonism Relat Disord 2009; 15: 144–148. doi: 10.1016/j.parkreldis.2008.04.038. PMID: 18571456.
  57. Lee F.J., Liu F. Genetic factors involved in the pathogenesis of Parkinson’s disease. Brain Res Rev 2008; 58: 354–364. doi: 10.1016/j.brainresrev.2008.02.001. PMID: 18313759.
  58. Bartels A.L., Leenders K.L. Parkinson’s disease: the syndrome, the pathogenesis and pathophysiology. Cortex 2009; 45: 915–921. doi: 10.1016/j.cortex.2008.11.010. PMID: 19095226.
  59. Dauer W., Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39: 889–909. doi: 10.1016/s0896-6273(03)00568-3. PMID: 12971891.
  60. Hornykiewicz O. Chemical neuroanatomy of the basal ganglia–normal and in Parkinson's disease. J Chem Neuroanat 2001; 22: 3–12. doi: 10.1016/s0891-0618(01)00100-4. PMID: 11470551.
  61. DeLong M.R., Wichmann T. Basal ganglia circuits as targets for neuromodulation in parkinson disease. JAMA Neurol 2015; 72: 1354–1360. doi: 10.1001/jamaneurol.2015.2397. PMID: 26409114.
  62. Benbir G., Ozekmekci S., Apaydin H. et al. A hospital-based study: risk factors in development of motor complications in 555 Parkinson’s patients on levodopa therapy. Clin Neurol Neurosurg 2006; 108: 726–732. doi: 10.1016/j.clineuro.2006.02.002. PMID: 16564615.
  63. Rajput A.H. Levodopa prolongs life expectancy and is non-toxic to substantia nigra. Parkinsonism Relat Disord 2001; 8: 95–100. doi: 10.1016/s1353-8020(01)00023-2. PMID: 11489674.
  64. Schapira A.H., Bezard E., Brotchie J. et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 2006; 5: 845–854. doi: 10.1038/nrd2087. PMID: 17016425.
  65. Lundblad M., Picconi B., Lindgren H., Cenci M.A. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 2004; 16: 110–123. doi: 10.1016/j.nbd.2004.01.007. PMID: 15207268.
  66. Picconi B., Piccoli G., Calabresi P. Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 2012; 970: 553–572. doi: 10.1007/978-3-7091-0932-8_24. PMID: 22351072.
  67. Johnson K.A., Conn P.J., Niswender C.M. Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 2009; 8: 475-491. doi: 10.2174/187152709789824606. PMID: 19702565.
  68. Niswender C.M., Conn P.J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50: 295–322. doi: 10.1146/annurev.pharmtox.011008.145533. PMID: 20055706.
  69. Nicoletti F., Bockaert J., Collingridge G.L. et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2011; 60: 1017–1041. doi: 10.1016/j.neuropharm.2010.10.022. PMID: 21036182.
  70. Amalric M. Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol 2015; 20: 29–34. doi: 10.1016/j.coph.2014.11.001. PMID: 25462289.
  71. Rylander D., Recchia A., Mela F. et al. Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 2009; 330: 227–235. doi: 10.1124/jpet.108.150425. PMID: 19357321.
  72. Breysse N., Baunez C., Spooren W. et al. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 2002; 22: 5669–5678. DOI: 20026513. PMID: 12097518.
  73. Coccurello R., Breysse N., Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 2004; 29: 1451–1461. doi: 10.1038/sj.npp.1300444. PMID: 15039773.
  74. Samadi P., Grégoire L., Morissette M. et al. Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of L-Dopa-induced dyskinesias. Neuropharmacology 2008; 54: 258–268. doi: 10.1016/j.neuropharm.2007.08.009. PMID: 18001807.
  75. Spooren W.P., Gasparini F., Bergmann R., Kuhn R. Effects of the prototypical mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral6-OHDA-lesioned rats. Eur J Pharmacol 2000; 406: 403–410. doi: 10.1016/s0014-2999(00)00697-x. PMID: 11040347.
  76. Gasparini F., Lingenhöhl K., Stoehr N. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 1999; 38: 1493–1503. doi: 10.1016/s0028-3908(99)00082-9. PMID: 10530811.
  77. Ossowska K., Konieczny J., Wardas J. et al. An influence of ligands of metabotropic glutamate receptor subtypes on parkinsonian-like symptoms and the striatopallidal pathway in rats. Amino Acids 2007; 32: 179–188. doi: 10.1007/s00726-006-0317-y. PMID: 16699817.
  78. Litim N., Morissette M., Di Paolo T. Metabotropic glutamate receptors as therapeutic targets in Parkinson’s disease: an update from the last 5 years of research. Neuropharmacology 2017; 115: 166-179. doi: 10.1016/j.neuropharm.2016.03.036. PMID: 27055772.
  79. Morin N., Grégoire L., Gomez-Mancilla B. et al. Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 2010; 58: 981–986. doi: 10.1016/j.neuropharm.2009.12.024. PMID: 20074579.
  80. Maranis S., Stamatis D., Tsironis C., Konitsiotis S. Investigation of theantidyskinetic site of action of metabotropic and ionotropic glutamatereceptor antagonists. Intracerebral infusions in 6-hydroxydopamine-lesioned rats with levodopa-induced dyskinesia. Eur J Pharmacol 2012; 683: 71–77. doi: 10.1016/j.ejphar.2012.02.036. PMID: 22410193.
  81. Grégoire L., Morin N., Ouattara B. et al. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in L-Dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord 2011; 17: 270. doi: 10.1016/j.parkreldis.2011.01.008. PMID: 21315648.
  82. Bezard E., Pioli E.Y., Li Q. et al. The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov Disord 2014; 29: 1074–1079. doi: 10.1002/mds.25920. PMID: 24865335.
  83. Ko W.K., Pioli E., Li Q. et al. Combined fenobam and amantadine treatment promotes robust antidyskinetic effects in the 1-methyl-4-phenyl-1 2,3,6-tetrahydropyridine (MPTP)-lesioned primate model of Parkinson’s disease. Mov Disord 2014; 29: 772–779. doi: 10.1002/mds.25859. PMID: 24610195.
  84. Tison F., Keywood C., Wakefield M. et al. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord 2016; 31: 1373–1380. doi: 10.1002/mds.26659. PMID: 27214664.
  85. Chen L., Liu J., Ali U. et al. Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist produces anxiolytic-like effects and reverses abnormal firing activity of projection neurons in the basolateral nucleus of the amygdala in rats with bilateral 6-OHDA lesions. Brain Res Bull 2011; 84: 215–223. doi: 10.1016/j.brainresbull.2011.01.005. PMID: 21255635.
  86. Hsieh M.H., Ho S.C., Yeh K.Y. et al. Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav 2012; 102: 64–71. doi: 10.1016/j.pbb.2012.03.022. PMID: 22487770.
  87. Masilamoni G.J., Bogenpohl J.W., Alagille D. et al. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 2011; 134: 2057–2073. doi: 10.1093/brain/awr137. PMID: 21705423.
  88. Alagarsamy S., Marino M.J., Rouse S.T. et al. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 1999; 2: 234–240. doi: 10.1038/6338. PMID: 10195215.
  89. Sala C., Roussignol G., Meldolesi J., Fagni L. Key role of the postsynaptic density scaffold proteins Shank and Homer in the functional architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. J Neurosci 2005; 25: 4587–4592. doi: 10.1523/JNEUROSCI.4822-04.2005. PMID: 15872106.
  90. Pchitskaya E., Popugaeva E., Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70: 87–94. doi: 10.1016/j.ceca.2017.06.008. PMID: 28728834.
  91. Stefani IC., Wright D., Polizzi K.M., Kontoravdi C. The role of ER stress-induced apoptosis in neurodegeneration. Curr Alzheimer Res 2012; 9: 373–387. doi: 10.2174/156720512800107618. PMID: 22299619.
  92. Calì T., Ottolini D., Brini M. Calcium signaling in Parkinson's disease. Cell Tissue Res 2014; 357: 439–454. doi: 10.1007/s00441-014-1866-0. PMID: 24781149.
  93. Sun Y., Zhang H., Selvaraj S. et al. Inhibition of L-type Ca2+ channels by TRPC1-STIM1 complex is essential for the protection of dopaminergic neurons. J Neurosci 2017; 37: 3364–3377. doi: 10.1523/JNEUROSCI.3010-16.2017. PMID: 28258168.
  94. Bollimuntha S., Singh B.B., Shavali S. et al. TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 2005; 280: 2132–2140. doi: 10.1074/jbc.M407384200. PMID: 15542611.
  95. Selvaraj S., Sun Y., Watt J.A. et al. Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 2012; 122: 1354–1367. doi: 10.1172/JCI61332. PMID: 22446186.
  96. Chan C.S., Guzman J.N, Ilijic E. et al. 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 2007; 447: 1081–1086. doi: 10.1038/nature05865. PMID: 17558391.
  97. McColgan P., Tabrizi S.J. Huntington's disease: a clinical review. Eur J Neurol 2018; 25: 24–34. doi: 10.1111/ene.13413. PMID: 28817209.
  98. Li S.H., Schilling G., Young W.S.3rd et al. Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron 1993; 11: 985–993. doi: 10.1016/0896-6273(93)90127-d. PMID: 8240819.
  99. Strong T.V., Tagle D.A., Valdes J.M. et al. Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues. Nat Genet 1993; 5: 259–265. doi: 10.1038/ng1193-259. PMID: 8275091.
  100. Kim S.D., Fung V.S. An update on Huntington's disease: from the gene to the clinic. Curr Opin Neurol 2014; 27: 477–483. doi: 10.1097/WCO.0000000000000116. PMID: 24978638.
  101. Andre R., Carty L., Tabrizi S.J. Disruption of immune cell function by mutant huntingtin in Huntington's disease pathogenesis. Curr Opin Pharmacol 2016; 26: 33–38. doi: 10.1016/j.coph.2015.09.008. PMID: 26461267.
  102. Chen N., Luo T., Wellington C. et al. Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 1999; 72: 1890–1898. doi: 10.1046/j.1471-4159.1999.0721890.x. PMID: 10217265.
  103. Schiefer J., Sprünken A., Puls C. et al. The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res 2004; 1019: 246–254. doi: 10.1016/j.brainres.2004.06.005. PMID: 15306259.
  104. Zeron M.M., Hansson O., Chen N. et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 2002; 33: 849–860. doi: 10.1016/s0896-6273(02)00615-3. PMID: 11906693.
  105. Raymond L.A. Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 2017; 483: 1051–1062. doi: 10.1016/j.bbrc.2016.07.058. PMID: 27423394.
  106. Sun Y., Savanenin A., Reddy P.H., Liu Y.F. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-d-aspartate receptors via post-synaptic density 95. J Biol Chem 2001; 276: 24713–24718. doi: 10.1074/jbc.M103501200. PMID: 11319238.
  107. Tang T.S., Tu H., Chan E.Y. et al. Huntingtin and huntingtin-associated protein 1influence neuronal calcium signaling mediated by inositol-(1 4,5)triphosphate receptor type 1. Neuron 2003; 39: 227–239. doi: 10.1016/s0896-6273(03)00366-0. PMID: 12873381.
  108. Doria J.G., Silva F.R., de Souza J.M. et al. Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington’s disease. Br J Pharmacol 2013; 169: 909–921. doi: 10.1111/bph.12164. PMID: 23489026.
  109. Nicodemo A.A., Pampillo M., Ferreira L.T. et al. Pyk2 uncouples metabotropic glutamate receptor G protein signaling but facilitates ERK1/2 activation. Mol Brain 2010; 3: 4. doi: 10.1186/1756-6606-3-4. PMID: 20180987.
  110. Humbert S., Bryson E.A., Cordelières F.P. et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2002; 2: 831–837. doi: 10.1016/s1534-5807(02)00188-0. PMID: 12062094.
  111. Warby S.C., Doty C.N., Graham R.K. et al. Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci 2009; 40: 121–127. doi: 10.1016/j.mcn.2008.09.007. PMID: 18992820.
  112. Chen T., Cao L., Dong W. et al. Protective effects of mGluR5 positive modulators against traumatic neuronal injury through PKC-dependent activation of MEK/ERK pathway. Neurochem Res 2012; 37: 983–990. doi: 10.1007/s11064-011-0691-z. PMID: 22228200.
  113. Loane D.J., Stoica B.A., Tchantchou F. et al. Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics 2014; 11: 857–869. doi: 10.1007/s13311-014-0298-6. PMID: 25096154.
  114. Zhang Y., Rodriguez A.L., Conn P.J. Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J Pharmacol Exp Ther 2005; 15: 1212–1219. doi: 10.1124/jpet.105.090308. PMID: 16135701.
  115. Doria J.G., de Souza J.M., Andrade J.N. et al. The mGluR5 positive allosteric modulator CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington’s disease. Neurobiol Dis 2015; 73: 163–173. doi: 10.1016/j.nbd.2014.08.021. PMID: 25160573.
  116. Lessmann V., Gottmann K., Malcangio M. Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 2003; 69: 341–374. doi: 10.1016/s0301-0082(03)00019-4. PMID: 12787574.
  117. Poo M.M. Neurotrophins as synaptic modulators. Nat Rev Neurosci 2001; 2: 24–32. doi: 10.1038/35049004. PMID: 11253356.
  118. Wu J., Shih H.P., Vigont V. et al. Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington's disease treatment. Chem Biol 2011; 18: 777-793. doi: 10.1016/j.chembiol.2011.04.012. doi: 10.1016/j.chembiol.2011.04.012. PMID: 21700213.
  119. Wu J., Ryskamp D.A., Liang X. et al. Enhanced store-operated calcium entry leads to striatal synaptic loss in a Huntington's disease mouse model. J Neurosci 2016; 36: 125–141. doi: 10.1523/JNEUROSCI.1038-15.2016. PMID: 26740655.
  120. Tang T.S., Guo C., Wang H. et al. Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model. J Neurosci 2009; 29: 1257–1266. doi: 10.1523/JNEUROSCI.4411-08.2009. PMID: 19193873.
  121. Vigont V., Kolobkova Y., Skopin A. et al. Both Orai1 and TRPC1 are involved in excessive store-operated calcium entry in striatal neurons expressing mutant Huntingtin Exon 1. Front Physiol 2015; 6: 337. doi: 10.3389/fphys.2015.00337. PMID: 26635623.
  122. Ryskamp D., Wu J., Geva M. et al. The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol Dis 2017; 97: 46–59. doi: 10.1016/j.nbd.2016.10.006. PMID: 27818324.

Statistics

Views

Abstract: 484

PDF (Russian): 498

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2019 Solntseva E.I., Rogozin P.D., Skrebitsky V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies