Spastic paraplegias types 11 and 15

Cover Page

Abstract

Introduction. A heterogeneous group of hereditary spastic paraplegias (HSP) with known causative genes, alongside the predominant autosomal dominant ones, includes numerous and diagnostically more complex autosomal recessive (AR) forms with diverse phenotypes. Massive parallele sequencing (MPS) techniques are widely used in HSP diagnosis.

The aim of the study was to determine the clinical and molecular genetic characteristics of two AR-HSPs — SPG11 and SPG15 — in Russia based on the first study of HSP using MPS.

Materials and methods. We examined 8 unrelated Russian families: seven with SPG11 and one with SPG15. Clinical and molecular analysis and multiplex ligation-dependent probe amplification (MLPA) were used.

Results. SPG11, diagnosed in seven families, was the most common AR form, accounting for 5.1% of the total group of 120 families with verified HSP (4th common) and 30.5% of the AR-HSP subgroup. Three of the nine identified SPG11 mutations have not been previously described; 2 families had identical genotypes, with one of the allelic mutations consisting of a large duplication; one previously described mutation was detected three times. Two patients had an atypical late onset, six cases had complicating concomitant symptoms, such as ataxia and/or dysarthria, cognitive impairment, while 3 out of 6 patients showed thinning of the corpus callosum on MRI. SPG15 was diagnosed in one patient at 13 years; two new mutations were found in the ZFYVE26 gene with a reading frame shift in the compound heterozygous state. Clinical phenotype in this patient included progressive cognitive decline in addition to spastic paraparesis; there was no macular degeneration typical (but not mandatory) of SPG15 up to the age of 17 years (according to follow-up data).

Conclusion. In a large group of patients in Russia, AR-HSP was represented by 12 different forms, with SPG11 being the most frequent and SPG15 also being present. A total of 11 mutations were found in the genes of both forms, 5 of which had not been previously described. Two complicated forms of HSP had a similar clinical presentation and were difficult to diagnose. MPS methods are indispensable in diagnosing diseases with pronounced genetic heterogeneity, such as HSP. Cases with major gene rearrangements confirm the importance of combining MPS with MLPA.

About the authors

Galina E. Rudenskaya

Research Centre for Medical Genetics, Moscow

Author for correspondence.
Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Varvara A. Kadnikova

Research Centre for Medical Genetics

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Oksana P. Ryzhkova

Research Centre for Medical Genetics

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Inga V. Anisimova

Research Centre for Medical Genetics

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Elena L. Dadaly

Research Centre for Medical Genetics

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Nina A. Dyomina

Research Centre for Medical Genetics

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Irina A. Mishina

Research Centre for Medical Genetics

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Ilya V. Kanivets

Genomed LTD

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Anna V. Antonetz

Genomed LTD

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

Alexander V. Polyakov

Research Centre for Medical Genetics

Email: rudenskaya@med-gen.ru
Russian Federation, Moscow

References

  1. Kadnikova V.A., Ryzhkova O.P., Rudenskaya G.E., Polyakov A.V. [Hereditary spastic paraplegias: molecular genetic diversity]. Uspekhi sovremennoi biologii 2018; 138(5): 462–475. doi: 10.7868/S0042132418050046. (In Russ.)
  2. Rudenskaya G.E., Kadnikova V.A., Ryzhkova O.P. [Hereditary spastic paraplegias in the era of next generation sequencing: epidemiology, classification, genetic diversity]. Meditsinskaya genetika 2018; 17(8): 3–12. doi: 10.25557/2073-7998.2018.09.3-12. (In Russ.)
  3. Boutry M., Morais S., Stevanin G. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep 2019; 19: 18. doi: 10.1007/s11910-019-0930-2. PMID: 30820684.
  4. Schagina O. A., Tverskaya S.M., Kadnikova V.A., Polyakov A.V. [DNA diagnostics of periodic disease]. Meditsinckaya genetika 2006; 5(10): 29–32. (In Russ.)
  5. Kadnikova V.A., Rudenskaya G.E., Stepanova A.A. et al. Mutational spectrum of Spast (Spg4) and Atl1 (Spg3a) genes in Russian patients with hereditary spastic paraplegia. Sci Rep 2019; 9: 14412. doi: 10.1038/s41598-019-50911-9. PMID: 31594988.
  6. Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B. et al. [Guidelines for the interpretation of data on human DNA sequencing obtained by methods of massive parallel sequencing (MPS) (Ed.2018, version 2)]. Meditsinskaya genetika 2019; 18(2): 3–23. doi: 10.25557/2073-7998.2019.02.3-23. (In Russ.)
  7. Chukhrova A.L., Akimova I.A., Shchagina O.A. et al. A new case of infantile-onset hereditary spastic paraplegia with complicated phenotype (SPG61) in a consanguineous Russian family. Eur J Neurol 2019; 26: e61–e62. doi: 10.1111/ene.13880. PMID: 30980493.
  8. Rudenskaya G.E., Kadnikova V.A, Chukhrova A.L. et al. [Rare autosomal recessive spastic paraplegias]. Meditsinskaya genetika 2019; 18(11): 26–35. doi: 10.25557/2073-7998.2019.11.26-3-35. (In Russ.)
  9. Rudenskaya G.E., Kadnikova V.A., Ryzhkova O.P. [Spastic ataxia of Charlevoix-Saguenay (ARSACS): first Russian case and review]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2020; 120(2): 85–91. doi: 10.17116/jnevro202012002185. PMID: 32307416. (In Russ.)
  10. Erichsen A.K, Koht J., Stray-Pedersen A. et al. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain 2009; 132, 1577–1588. doi: 10.1093/brain/awp056. PMID: 19339254.
  11. Coutinho P., Ruano L., Loureiro J.L. et al. Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol 2013; 70: 746–755. doi: 10.1001/jamaneurol.2013.1707. PMID: 23609960.
  12. Ishiura H., Takahashi Y., Hayashi T. et al.Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses. J Hum Genet 2014; 59: 163–172. doi: 10.1038/jhg.2013.139. PMID: 24451228.
  13. Bettencourt C., López-Sendón J.L., García-Caldentey J. et al. Exome sequencing is a useful diagnostic tool for complicated forms of hereditary spastic paraplegia. Clin Genet 2014; 85: 154–158. doi: 10.1111/cge.12133. PMID: 23438842.
  14. Pensato V., Castellotti B., Gellera C. et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain 2014; 137: 1907–1920. doi: 10.1093/brain/awu121. PMID: 24833714.
  15. Chrestian N., Dupré N., Gan-Or Z. et al. Clinical and genetic study of hereditary spastic paraplegia in Canada. Neurol Genet 2016; 3: e122. doi: 10.1212/NXG.0000000000000122. PMID: 27957547.
  16. Kara E., Tucci A., Manzoni C. et al. Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 2016; 139: 1904–1918. doi: 10.1093/brain/aww111. PMID: 27217339.
  17. Stevanin G., Dürr A., Brice A. Spastic Paraplegia 11 (Update 2013). Gene Reviews. Seattle, 2019. PMID: 20301389.
  18. Fraidakis M.J., Brunetti M., Blackstone C. et al. Novel compound heterozygous spatacsin mutations in a Greek kindred with hereditary spastic paraplegia SPG11 and dementia. Neurodegener Dis 2016; 16: 373–381. doi: 10.1159/000444715. PMID: 27318863.
  19. Travaglini L., Aiello C., Stregapede F. et al. The impact of next-generation sequencing on the diagnosis of pediatric-onset hereditary spastic paraplegias: new genotype-phenotype correlations for rare HSP-related genes. Neurogenetics 2018; 19: 111–121. doi: 10.1007/s10048-018-0545-9. PMID: 29691679.
  20. Günther S., Elert-Dobkowska E., Soehn A.S. et al. High frequency of pathogenic rearrangements in SPG11 and extensive contribution of mutational hotspots and founder alleles. Hum Mutat 2016; 37: 703–709. doi: 10.1002/humu.23000. PMID: 27071356.
  21. Schüle R., Wiethoff S., Martus P. et al. Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients. Ann Neurol 2016; 79: 646–658. doi: 10.1002/ana.24611. PMID: 26856398.
  22. de Bot S.T., Burggraaff R.C., Herkert J.C. et al. Rapidly deteriorating course in Dutch hereditary spastic paraplegia type 11 patients. Eur J Hum Genet 2013; 21: 1312–1315. doi: 10.1038/ejhg.2013.27. PMID: 23443022.
  23. Schüle R., Schlipf N., Synofzik M. et al. Frequency and phenotype of SPG11 and SPG15 in complicated hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry 2009; 80: 1402–1404. doi: 10.1136/jnnp.2008.167528. PMID: 19917823.
  24. Giannoccaro M.P., Liguori R., Arnoldi A. et al. Atypical late-onset hereditary spastic paraplegia with thin corpus callosum due to novel compound heterozygous mutations in the SPG11 gene. J Neurol 2014; 261: 1825–1827. doi: 10.1007/s00415-014-7443-3. PMID: 25059394.
  25. Rubegni A., Storti E., Tessa A. et al. Hereditary spastic paraplegia type 11 with a very late onset. J Neurol 2015; 262: 1987–1989. doi: 10.1007/s00415-015-7854-7859. PMID: 26183056.
  26. Riverol M., Samaranch L., Pascual B. et al. Forceps minor region signal abnormality "ears of the lynx": an early MRI finding in spastic paraparesis with thin corpus callosum and mutations in the spatacsin gene (SPG11) on chromosome 15. J Neuroimaging 2009; 19: 52–60. doi: 10.1111/j.1552-6569.2008.00327.x. PMID: 19040626.
  27. Nuzhny E.P. [Clinical and genetic characterisics of autosomal recessive ataxias im adult patients. PhD Thesis]. Moscow, 2019. (In Russ.)
  28. Schneider-Gold C., Dekomien G., Regensburger M. et al. Monozygotic twins with a new compound heterozygous SPG11 mutation and different disease expression. J Neurol Sci 2017; 381: 265–268. doi: 10.1016/j.jns.2017.09.005. PMID: 28991695.
  29. Anheim M., Lagier-Tourenne C., Stevanin G. et al. SPG11 spastic paraplegia. A new cause of juvenile parkinsonism. J Neurol 2009; 256: 104–108. doi: 10.1007/s00415-009-0083-3. PMID: 19224311.
  30. Pozner T., Rgensburger M., Engelhorn L. et al. Janus-faced spatacsin (SPG11): involvement in neurodevelopment and multisystem neurodegeneration. Brain 2020; 143: 2369–2379. doi: 10.1093/brain/awaa099. PMID: 32355960.
  31. Manole A., Chelban V., Haridy N.A. et al. Severe axonal neuropathy is a late manifestation of SPG11. J Neurol 2016; 263: 2278–2286. doi: 10.1007/s00415-016-8254-5. PMID: 27544499.
  32. Iskender C., Kartal E., Akcimen F. et al. Turkish families with juvenile motor neuron disease broaden the phenotypic spectrum of SPG11. Neurol Genet 2015; 1: e25. DOI: 0.1212/NXG.0000000000000025. PMID: 27066562.
  33. Denora P.S., Smets K., Zolfanelli F. et al. Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain 2016; 139: 1723–1734. doi: 10.1093/brain/aww061. PMID: 27016404.
  34. Khani M., Shamshiri H., Fatehi F. et al. Description of сombined ARHSP/JALS phenotype in some patients with SPG11 mutations. Mol Genet Genomic Med 2020; 8: e1240. doi: 10.1002/mgg3.1240. PMID: 32383541.
  35. Schicks J., Synofzik M., Pétursson H. et al. Atypical juvenile parkinsonism in a consanguineous SPG15 family. Mov Disord 2011; 26: 564–566. doi: 10.1002/mds.23472. PMID: 21462267.
  36. Özdemir T.R., Gençpınar P., Özgür Öztekin P. et al. A case of spastic paraplegia-15 with a novel pathogenic variant in ZFYVE26 gene. Int J Neurosci 2019; 129: 1198–1202. doi: 10.1080/00207454.2019.1653293. PMID: 31385551.
  37. Bibi F., Efthymiou S., Bourinaris T. et al. Rare novel CYP2U1 and ZFYVE26 variants identified in two Pakistani families with spastic paraplegia. J Neurol Sci 2020; 411: 116669. doi: 10.1016/j.jns.2020.116669. PMID: 32006740.
  38. Slabicki M., Theis M., Krastev D. B. et al. A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol 2010; 8: e1000408. doi: 10.1371/journal.pbio.1000408. PMID: 20613862.
  39. Sagona A.P., Nezis I.P., Pedersen N.M. et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol 2010; 12: 362–371. doi: 10.1038/ncb2036. PMID: 20208530.
  40. Orlén H., Melberg A., Raininko R. et al. SPG11mutations cause Kjellin syndrome, a hereditary spastic paraplegia with thin corpus callosum and central retinal degeneration. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 984–992. doi: 10.1002/ajmg.b.30928. PMID: 19194956.
  41. Goizet C., Boukhris A., Maltete D. et al. SPG15 is the second most common cause of hereditary spastic paraplegia with thin corpus callosum. Neurology 2009; 73: 1111–1119. doi: 10.1212/WNL.0b013e3181bacf59. PMID: 19805727.
  42. Mallaret M., Lagha-Boukbiza O., Biskup S. et al. SG15: a cause of juvenile atypical levodopa responsive parkinsonism. J Neurol 2014; 261: 435–437. doi: 10.1007/s00415-013-7216-4. PMID: 24366652.

Statistics

Views

Abstract: 351

PDF (Russian): 253

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2020 Rudenskaya G.E., Kadnikova V.A., Ryzhkova O.P., Anisimova I.V., Dadaly E.L., Dyomina N.A., Mishina I.A., Kanivets I.V., Antonetz A.V., Polyakov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies