The neuroprotective efficacy of carnosine-containing nanoliposomes and S-trolox-carnosine under oxidative stress conditions in vitro and in vivo
- Authors: Fedorova T.N.1, Stvolinskiy S.L.1, Kulikova O.I.1, Konovalova E.V.1, Levacheva I.S.2, Samsonova O.-2, Bakovskiy U.-2
-
Affiliations:
- Research Center of Neurology
- Philipps-Universitat
- Issue: Vol 10, No 1 (2016)
- Pages: 47-52
- Section: Original articles
- Submitted: 31.01.2017
- Published: 03.02.2017
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/70
- DOI: https://doi.org/10.17816/psaic70
- ID: 70
Cite item
Full Text
Abstract
We investigated the protective effect of carnosine (carnosine-containing nanoliposomes and newly synthesized S-trolox-carnosine) in experiments in vivo on a model of acute hypobaric hypoxia in rodents and in vitro on neuronal cultures under oxidative stress conditions. We demonstrated the ability of new carnosine compounds to increase resistance of animals to acute hypobaric hypoxia, protecting the brain from oxidative damage. This effect is accompanied by preservation of acquired skills in the Morris water maze test, which is likely related to an increased efficiency of the brain antioxidant system. When oxidative stress was induced by hydrogen peroxide, spermine, acrolein, or cadmium in a suspension of cerebellar granule cells of the SAMP1 mouse line, a primary culture of rat cerebellar neurons, and a culture of neuronally differentiated PC-12 cells, carnosine (carnosine-containing nanoliposomes and S-trolox-carnosine) was able to inhibit generation of reactive oxygen species and reduce death of cells, enhancing the cell viability. The study results demonstrate high antihypoxic and antioxidant activities of the new carnosine compounds and open up prospects for the development and use of carnosine-based drugs in neurology.
About the authors
Tatiana N. Fedorova
Research Center of Neurology
Email: tnf51@bk.ru
Russian Federation, Moscow
S. L. Stvolinskiy
Research Center of Neurology
Email: tnf51@bk.ru
Russian Federation, Moscow
O. I. Kulikova
Research Center of Neurology
Email: tnf51@bk.ru
Russian Federation, Moscow
E. V. Konovalova
Research Center of Neurology
Email: tnf51@bk.ru
Russian Federation, Moscow
I. S. Levacheva
Philipps-Universitat
Email: tnf51@bk.ru
Germany, Marburg
O. - Samsonova
Philipps-Universitat
Email: tnf51@bk.ru
Germany, Marburg
U. - Bakovskiy
Philipps-Universitat
Author for correspondence.
Email: tnf51@bk.ru
Germany, Marburg
References
- Болдырев А.А. Карнозин: новые концепции для функции давно известной молекулы. Биохимия 2012; 77 (40): 403–418.
- Федорова Т.Н. Окислительный стресс и защита головного мозга от ишемического повреждения. Автореф. дисс. …д. б. н. М., 2004; 40.
- Akkuratov E.E., Lopacheva O.M., Kruusmägi M. et al. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons. Mol. Neurobiol. 2014: epub ahead.
- Bellia F., Vecchio G., Cuzzocrea S. et al. Neuroprotective features of carnosine in oxidative driven diseases. Mol. Aspects Med. 2011; 32: 258–266.
- Boldyrev A.A., Aldini G., Derave W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013; 93: 1803–1845.
- Boldyrev A., Fedorova T., Stepanova M. et al. Carnosine increases efficiency of DOPA therapy of Parkinson’s disease: a pilot study. Rejuv.Res. 2008; 11: 988–994.
- Boldyrev A., Song R., Dyatlov V.A. et al. Neuronal cell death and reactive oxygen species. Cell Mol.Neurobiol. 2000; 20 (4): 433–450.
- Boldyrev A.A., Stvolinsky S.L., Tyulina O.V. et al. Biochemical and physiological evidence that carnosine is an endogenous neuroprotector against free radicals. Cell. Mol. Neurobiol. 1997; 17: 259–271.
- Hipkiss A.R. Carnosine and its possible roles in nutrition and health. Adv. Food Nutr. Res. 2009; 57: 87–154.
- Johnson P., Hammer J.L. Histidine dipeptide levels in ageing and hypertensive rat skeletal and cardiac muscles. Comp.Biochem. Physiol. B. 1992; 103 (4): 981–984.
- Lenney J.F. Separation and characterization of two carnosinesplitting cytosolic dipeptidases from hog kidney (carnosinase and nonspecific dipeptidase). Biol. Chem. Hoppe SeylerJ. 1990; 371: 433–440.
- Meguro K., Boldyrev A., Sato T. et al. Novel Carnosine Derivative and Composition Containing the Same. JP2008-19188, Japan.
- Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984; 11: 47–60.
- Schlesier K., Harwat M., Bőhm V., Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Rad. Res. 2002; 36: 177–187.
- Stvolinsky S.L., Bulygina E.R., Fedorova T.N. et al. Biological Activity of Novel Synthetic Derivatives of Carnosine. Cell. Mol.Neurobiol. 2010; 3: 395–404.
- Stvolinsky S., Antipin M., Meguro K. et al. Effect of carnosine and its Trolox-modified derivatives on life span of Drosophila melanogaster. Rejuv. Res. 2010; 13: 453–457.
- Stohs S.J., Bagchi D., Hassoun E., Bagchi M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J. Environ.Pathol.Toxicol.Oncol. 2001; 20 (2): 77–88.
- Sureda F.X., Camins A., Trullas R. et al. A flow cytometric study of N-methyl-D-aspartate effects on dissociated cerebellar cells. Brain Res. 1996; 723: 110–114.
- Valko M., Morris H., Cronin M.T. Metals, toxicity and oxidative stress.Curr. Med. Chem. 2005; 12 (10): 1161–1208.
- Zhong Y., Bellamkonda R.V. Biomaterials for the central nervous system. J. R. Soc. Interface 2008; 5: 957–975.
- Zolnik B.S., Sadrieh N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv. Drug Deliv. Rev. 2009; 61: 422–427.
- www.nap.edu/books/0309083893/html/R1.html.1996.