Preconditioning with ouabain reduces the neurological deficit in rats caused by compression-induced cerebral ischemia

Cover Page

Cite item

Full Text


Ischaemic brain damage is a major neurobiological and medical social problem, making experimental research of the pathogenesis of cerebral ischemia and the search for ways to minimize its consequences particularly relevant.

The aim of the study was to determine the possibility of reducing the neurological deficit and functional limb asymmetry in laboratory rats through ischaemic tolerance using ouabain, a Na+/K+- ATPase inhibitor.

Materials and methods. Cerebral ischemia was modeled using 20-minute focal compression of the left sensorimotor cortex in the rat brain. To induce tolerance, laboratory animals were given a single intravenous injection of 0.7 mg/kg of the Na+/K+-ATPase inhibitor ouabain 24 or 72 hours before the ischaemic event. Functional impairment was assessed with tests for neurological deficits in the limbs and a test for forelimb performance in laboratory animals.

Results. Preliminary ouabain administration prevented the development of functional impairment due to compression-induced ischemia of the sensorimotor cortex, with a decrease in limb asymmetry and the severity of motor dysfunction.

Conclusion. In animals, pharmacological preconditioning with ouabain increases the brain's resistance to subsequent compression-induced ischemia, preventing functional asymmetry and improving both right and left limb function. The obtained data expand the possibilities of using Na+/K+-ATPase inhibitors to treat cerebral ischemia.

About the authors

Elena V. Stelmashook

Research Center of Neurology

Author for correspondence.
Russian Federation, Moscow

Elizaveta E. Genrikhs

Research Center of Neurology

Russian Federation, Moscow

Nikolay K. Isaev

Research Center of Neurology

Russian Federation, Moscow

Svetlana V. Novikova

Research Center of Neurology

Russian Federation, Moscow

Leonid G. Khaspekov

Research Center of Neurology

Russian Federation, Moscow


  1. Donnan G.A., Fisher M., Macleod M., Davis S.M. Stroke. Lancet 2008; 371: 1612–1623. doi: 10.1016/S0140-6736(08)60694-7. PMID: 18468545.
  2. Korchagin V.I., Mironov K.O., Dribnokhodova O.P. et al. [A role of genetic factors in the development of individual predisposition to ischemic stroke]. Annals of Clinical and Experimental Neurology 2016; 10(1): 65–75. (In Russ.)
  3. Bakeeva L.E., Barskov I.V., Egorov M.V. et al. [Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke)]. Biochemistry 2008; 73(12): 1288–1299. doi: 10.1134/s000629790812002x. PMID: 19120015. (In Russ.)
  4. Genrikhs E.E., Stelmashook E.V., Isaev N.K. Method for assessing neurological limb deficiency in experimental rats. Patent RF No. 2697791 for invention. 2019. (In Russ.)
  5. Genrikhs E.E., Stelmashook E.V., Kapkaeva M.R. et al. [Modeling of focal injury in the left hemisphere of rat brain and functional assessment depending on the severity of damage in the posttraumatic period]. Asimmetriya 2016; 10(4): 26–33. (In Russ.)
  6. Genrikhs E.E., Stelmashook E.V., Isaev N.K. Method for evaluating the performance of the forelimbs in experimental animals. Patent RF No. 2714479 for invention. 2020. (In Russ.)
  7. Genrikhs E.E., Stelmashook E.V., Kapkaeva M.R. et al. [The change of functional limb asymmetry in modelling the unilateral traumatic brain injury of varying severity]. Asimmetriya 2018; 12(2): 5–17. doi: 10.18454/asy.2018.2.14181. (In Russ.)
  8. Genrikhs E.E., Kapkaeva M.R., Novikova al. [Dependence of volume of brain tissue damage from the severity of traumatic brain injury] Asimmetriya 2018; 12(4): 154–159. doi: 10.18454/ASY.2018.12.4.007. (In Russ.)
  9. Kitagawa K., Matsumoto M., Tagaya M. et al. 'Ischemic tolerance' phenomenon foundin the brain. Brain Res 1990; 528: 21–24. doi: 10.1016/0006-8993(90)90189-i. PMID: 2245337.
  10. Weih M., Bergk A., Isaev N.K. et al. Induction of ischemic tolerance in rat cortical neurons by 3-nitropropionic acid: chemical preconditioning. Neurosci Lett 1999; 272: 207–210. doi: 10.1016/s0304-3940(99)00594-7. PMID: 10505617.
  11. Zhai X., Lin H., Chen Y. et al. Hyperbaric oxygen preconditioning ameliorates hypoxia-ischemia brain damage by activating Nrf2 expression in vivo and in vitro. Free Radic Res 2016; 50: 454–466. doi: 10.3109/10715762.2015.1136411. PMID: 26729624.
  12. Pylova S.I., Majkowska J., Hilgier W. et al. Rapid decrease of high affinity ouabain binding sites in hippocampal CA1 region following short-term global cerebral ischemia in rat. Brain Res 1989; 490: 170–173. doi: 10.1016/0006-8993(89)90446-0. PMID: 2547499.
  13. Nagafuji T., Koide T., Takato M. Neurochemical correlates of selective neuronal loss following cerebral ischemia: role of decreased Na+, K+-ATPase activity. Brain Res 1992; 571: 265–271. doi: 10.1016/0006-8993(92)90664-u. PMID: 1535268.
  14. Bruer U., Weih M.K., Isaev N.K. et al. Induction of tolerance in rat corticalneurons: hypoxic preconditioning. FEBS Lett 1997; 414: 117–121. doi: 10.1016/s0014-5793(97)00954-x. PMID: 9305743.
  15. Lopachev A.V., Lopacheva. O.M., Kulichenkova K.N. et al. [The effect of ouabain and bufalin on neurons primary culture of the cerebral cortex of the rat brain under conditions of glucose-oxygen deprivation]. Voprosy biologicheskoy, meditsinskoy i farmatsevticheskoy khimii 2019; 22(10): 19–24. doi: 10.29296/25877313-2019-10-03. (In Russ.)
  16. Stelmashuk E.V., Isaev N.K., Andreeva N.A., Viktorov I.V. [Ouabain modulates the toxic effect of glutamate in dissociated cultures of granular cells in the rat cerebellum]. Byulleten’ eksperimental’noy biologii i meditsiny 1996; 122(8): 163–166. PMID: 9081467. (In Russ.)
  17. Stelmashuk E.V., Isaev N.K., Genrikhs al. [The transient inhibition of Na+/К+-атpase activity reduces glutamate-induced calcium overload of cultured cerebellar granule cells]. Asimmetriya 2018; 12(4): 476–481. doi: 10.18454/ASY.2018.12.4.016. (In Russ.)
  18. Lopachev A.V., Lopacheva O.M., Kulikova O.I., Fedorova T.N. [Oubain decreases the excitotoxic effect of kainate and the number of kainate KA2 receptors in the primary culture of the rat cortical neurons]. Asimmetriya 2019; 13(4): 14–21. doi: 10.25692/ASY.2019.13.4.002. (In Russ.)
  19. Stelmashuk E.V., Isaev N.K., Genrikhs E.E., Khaspekov L.G. [The effect of modulation of Na+/К+-АТPase activity on viability of cerebellar granule cells exposed to oxidative stress In Vitro]. Annals of Clinical and Experimental Neurology 2018; 12(4): 52–56. doi: 10.25692/ACEN.2018.4.7. (In Russ.)
  20. Isaev N.K., Stelmashook E.V., Halle A. et al. Inhibition of Na+,K+-ATPase activity in cultured rats cerebellar granule cells prevents the onset apoptosis induced by low potassium. Neurosci Lett 2000; 283: 41–44. doi: 10.1016/s0304-3940(00)00903-4. PMID: 10729629.
  21. Lopachev A.V., Lopacheva O.M., Nikiforova K.A. et al. [Comparative action of cardiotonic steroids on intracellular processes in rat cortical neurons]. Biokhimiya 2018; 83: 140–151. doi: 10.1134/S0006297918020062. PMID: 29618300. (In Russ.)
  22. Garcia I.J.P., Kinoshita P.F., Silva L.N.D.E et al. Ouabain attenuates oxidative stress and modulates lipid composition in hippocampus of rats in lipopolysaccharide-induced hypocampal neuroinflammation in rats. J Cell Biochem 2019; 120: 4081–4091. doi: 10.1002/jcb.27693. PMID: 30260008.
  23. de Souza Gonçalves B., de Moura Valadares J.M., Alves S.L.G. et al. Evaluation of neuroprotective activity of digoxin and semisynthetic derivatives against partial chemical ischemia. J Cell Biochem 2019; 120: 17108–17122. doi: 10.1002/jcb.28971. PMID: 31310381.
  24. Sibarov D.A., Bolshakov A.E., Abushik P.A. et al. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J Pharmacol Exp Ther 2012; 343: 596–607. doi: 10.1124/jpet.112.198341. PMID: 22927545.
  25. Stelmashook E.V., Weih M., Zorov D. et al. Short-term block of Na+/K+-ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells. FEBS Lett 1999; 456: 41–44. doi: 10.1016/s0014-5793(99)00922-9. PMID: 10452526.
  26. Lopachev A.V., Lopacheva O.M., Osipova E.A. et al. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells. Cell Biochem Funct 2016; 34: 367–377. doi: 10.1002/cbf.3199. PMID: 27338714.
  27. Peng K., Tan D., He M. et al. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats. Neuroreport 2016; 27: 906–915. doi: 10.1097/WNR.0000000000000630. PMID: 27362436.
  28. de Souza Wyse A.T., Streck E.L., Worm P. et al. Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 2000; 25: 971–975. doi: 10.1023/a:1007504525301. PMID: 10959493.
  29. Watanabe S., Hoffman J.R., Craik R.L. et al. A new model of localized ischemia in rat somatosensory cortex produced by cortical сompression. Stroke 2001; 32: 2615–2623. doi: 10.1161/hs1101.097384. PMID: 11692026.

Supplementary files

Supplementary Files

Copyright (c) 2020 Stelmashook E.V., Genrikhs E.E., Isaev N.K., Novikova S.V., Khaspekov L.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies