Rehabilitation of elderly patients at risk of falling: the value of psychophysiological parameters and cognitive-motor training using virtual reality

Cover Page

Abstract

Due to the slowing of the neurodynamic and cognitive processes, as well as changes in the musculoskeletal system that accompany aging, attention, reaction, and movement coordination are impaired in elderly patients. Decreased overall brain adaptability leads to an increased risk of falls and disability, thus reducing the age of active aging. According to the World Health Organization, 37.3 million falls occur annually that are not fatal but have serious consequences requiring medical attention. These falls are most common among people over the age of 65 years. An objective assessment of psychophysiological characteristics identified a correlation between the duration of simple and complex reactions and the risk of falls and served as a tool for evaluating the effectiveness of balance retraining. Studies have shown that cognitive-motor training improves postural stability and functional performance in daily life. This type of training is widely used to rehabilitate patients with balance disorders, and virtual reality systems are increasingly being used in its implementation. There is a theory that the virtual environment can improve responses to rapid environmental changes, as well as modulate various characteristics of attention, spatiotemporal memory, and planning, which favorably affects postural function. This review describes the changes in psychophysiological parameters in the elderly, as well as balance retraining techniques using cognitive-motor training, including the use of virtual reality technology.

About the authors

Anton S. Klochkov

Research Center of Neurology

Email: nastushkapal@gmail.com
Russian Federation, Moscow

Anastasia E. Khizhnikova

Research Center of Neurology

Author for correspondence.
Email: nastushkapal@gmail.com
Russian Federation, Moscow

Anna A. Fuks

M.V. Lomonosov Moscow State University

Email: nastushkapal@gmail.com
Russian Federation, Moscow

Artem M. Kotov-Smolenskiy

Research Center of Neurology

Email: nastushkapal@gmail.com
Russian Federation, Moscow

Natalia A. Suponeva

Research Center of Neurology

Email: nastushkapal@gmail.com
Russian Federation, Moscow

Mikhail A. Piradov

Research Center of Neurology

Email: nastushkapal@gmail.com
Russian Federation, Moscow

References

  1. Salthouse T.A. When does age-related cognitive decline begin? Neurobiol Aging 2009; 30: 507–514. doi: 10.1016/j.neurobiolaging.2008.09.023. PMID: 19231028.
  2. Salthouse T. Consequences of age-related cognitive declines. Annu Rev Psychol 2012; 63: 201–226. doi: 10.1146/annurev-psych-120710-100328. PMID: 21740223.
  3. Wong A.L., Goldsmith J., Forrence A.D. et al. Reaction times can reflect habits rather than computations. Elife 2017; 6: 1–18 (e28075). doi: 10.7554/eLife.28075. PMID: 28753125.
  4. Der G., Deary I.J. Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychol Aging 2006; 21: 62–73. doi: 10.1037/0882-7974.21.1.62. PMID: 16594792.
  5. Mendelson D.N., Redfern M.S., Nebes R.D., Richard Jennings J. Inhibitory processes relate differently to balance/reaction time dual tasks in young and older adults. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2010; 17: 1–18. doi: 10.1080/13825580902914040. PMID: 19526388.
  6. World Health Organization. WHO Global Report on Falls Prevention in Older Age. 2007. DOI: 978 92 4 156353 6.
  7. Ou L.C., Chang Y.F., Chang C.S. et al. Epidemiological survey of the feasibility of broadband ultrasound attenuation measured using calcaneal quantitative ultrasound to predict the incidence of falls in the middle aged and elderly. BMJ Open 2017; 7: e013420. doi: 10.1136/bmjopen-2016-013420. PMID: 28069623.
  8. van Rijsbergen M.W., Mark R.E., de Kort P.L., Sitskoorn M.M. Subjective cognitive complaints after stroke: a systematic review. J Stroke Cerebrovasc Dis 2014; 23: 408–420. doi: 10.1016/j.jstrokecerebrovasdis.2013.05.003. PMID: 23800498.
  9. Winstein C.J., Stein J., Arena R. et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016; 47: 98–169. doi: 10.1161/STR.0000000000000098. PMID: 27145936.
  10. Hamed A., Bohm S., Mersmann F., Arampatzis A. Follow-up efficacy of physical exercise interventions on fall incidence and fall risk in healthy older adults: a systematic review and meta-analysis. Sport Med Open 2018; 4: 56. doi: 10.1186/s40798-018-0170-z. PMID: 30547249.
  11. Nawaz A., Skjæret N., Helbostad J.L. et al. Usability and acceptability of balance exergames in older adults: a scoping review. Health Informatics J 2016; 22: 911–931. doi: 10.1177/1460458215598638. PMID: 26303810.
  12. Li S.C., Lindenberger U., Hommel B. et al. Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychol Sci 2004; 15: 155–163. doi: 10.1111/j.0956-7976.2004.01503003.x. PMID: 15016286.
  13. Eckner J.T., Richardson J.K., Kim H. et al. A novel clinical test of recognition reaction time in healthy adults. Psychol Assess 2012; 24: 249–254. doi: 10.1037/a0025042. PMID: 21859222.
  14. Reimers S., Maylor E.A. Gender effects on reaction time variability and trial-to-trial performance: reply to Deary and Der (2005). Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2006; 13: 479–489. doi: 10.1080/138255890969375. PMID: 16887784.
  15. Haynes B.I., Bauermeister S., Bunce D. A systematic review of Longitudinal Associations between reaction time intraindividual variability and age-related cognitive decline or impairment, dementia, and mortality. J Int Neuropsychol Soc 2017; 23: 431–445. doi: 10.1017/S1355617717000236. PMID: 28462758.
  16. Kochan N.A., Bunce D., Brodaty H. et al. P4-157: Intra-individual variability of reaction time performance is a sensitive marker of mortality risk in old age: findings from the sydney memory and ageing study. Alzheimer’s Dement 2014; 10: 847–847. doi: 10.1016/j.jalz.2014.05.1674.
  17. Bielak A.A.M., Hultsch D.F., Strauss E. et al. Intraindividual variability in reaction time predicts cognitive outcomes 5 years later. Neuropsychology 2010; 24: 731–741. doi: 10.1037/a0019802. PMID: 20853957.
  18. Burton C.L., Strauss E., Hultsch D.F., Hunter M.A. The relationship between everyday problem solving and inconsistency in reaction time in older adults. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2009; 16: 607–632. doi: 10.1080/13825580903167283. PMID: 19728187.
  19. Nassauer K.W., Halperin J.M. Dissociation of perceptual and motor inhibition processes through the use of novel computerized conflict tasks. J Int Neuropsychol Soc 2003; 9: 25–30. doi: 10.1017/S1355617703910034. PMID: 12570355.
  20. Schoene D., Delbaere K., Lord S.R. Impaired response selection during stepping predicts falls in older people—a cohort study. J Am Med Dir Assoc 2017; 18: 719–725. doi: 10.1016/j.jamda.2017.03.010. PMID: 28526585.
  21. Wang D., Zhang J., Sun Y. et al. Evaluating the fall risk among elderly population by choice step reaction test. Clin Interv Aging 2016; 11: 1075–1082. doi: 10.2147/CIA.S106606. PMID: 27563238.
  22. Salvà A., Roqué M., Rojano X. et al. Falls and risk factors for falls in community-dwelling adults with dementia (NutriAlz trial). Alzheimer Dis Assoc Disord 2012; 26: 74–80. doi: 10.1097/WAD.0b013e318215ca90. PMID: 22354139.
  23. Taylor M.E., Lord S.R., Delbaere K. et al. Reaction time and postural sway modify the effect of executive function on risk of falls in older people with mild to moderate cognitive impairment. Am J Geriatr Psychiatry 2017; 25: 397–406. doi: 10.1016/j.jagp.2016.10.010. PMID: 28063853.
  24. Viaje S., Crombez G., Lord S.R. et al. The role of concern about falling on stepping performance during complex activities. BMC Geriatr 2019; 19: 333. doi: 10.1186/s12877-019-1356-z. PMID: 31775634.
  25. Lord S.R., Fitzpatrick R.C. Choice stepping reaction time: A composite measure of falls risk in older people. J Gerontol A Biol Sci Med Sci 2001; 56: 627–632. doi: 10.1093/gerona/56.10.M627. PMID: 11584035.
  26. Graveson J., Bauermeister S., McKeown D., Bunce D. Intraindividual reaction time variability, falls, and gait in old age: a systematic review. J Gerontol B Psychol Sci Soc Sci 2016; 71: 857–864. doi: 10.1093/geronb/gbv027. PMID: 25969471.
  27. Bunce D., Haynes B.I., Lord S.R. et al. Intraindividual stepping reaction time variability predicts falls in older adults with mild cognitive impairment. J Gerontol A Biol Sci Med Sci 2016; 72: 832–837. doi: 10.1093/gerona/glw164. PMID: 27591431.
  28. Donoghue O.A., Cronin H., Savva G.M. et al. Effects of fear of falling and activity restriction on normal and dual task walking in community dwelling older adults. Gait Posture 2013; 38: 120–124. doi: 10.1016/j.gaitpost.2012.10.023. PMID: 23200462.
  29. Reelick M.F., van Iersel M.B., Kessels R.P., Rikkert M.G. The influence of fear of falling on gait and balance in older people. Age Ageing 2009; 38: 435–440. doi: 10.1093/ageing/afp066. PMID: 19451658.
  30. Woollacott M., Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2002; 16: 1–14. doi: 10.1016/S0966-6362(01)00156-4. PMID: 12127181.
  31. Bauermeister S., Sutton G., Mon-Williams M. et al. Intraindividual variability and falls in older adults. Neuropsychology 2017; 31: 20–27. doi: 10.1037/neu0000328. PMID: 27831695.
  32. Okubo Y., Schoene D., Lord S.R. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br J Sports Med 2017; 51: 586–593. doi: 10.1136/bjsports-2015-095452. PMID: 26746905.
  33. Morrison S., Colberg S.R., Parson H.K., Vinik A.I. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy. J Diabetes Complications 2014; 28: 715–722. doi: 10.1016/j.jdiacomp.2014.04.007. PMID: 24929798.
  34. Bootsman N.J.M., Skinner T.L., Lal R. et al. The relationship between physical activity, and physical performance and psycho-cognitive functioning in older adults living in residential aged care facilities. J Sci Med Sport 2018; 21: 173–178. doi: 10.1016/j.jsams.2017.07.006. PMID: 28778824.
  35. Li K.Z., Roudaia E., Lussier M. et al. Benefits of cognitive dual-task training on balance performance in healthy older adults. J Gerontol A Biol Sci Med Sci 2010; 65: 1344–1352. doi: 10.1093/gerona/glq151. PMID: 20837662.
  36. Eggenberger P., Schumacher V., Angst M. et al. Does multicomponent physical exercise with simultaneous cognitive training boost cognitive performance in older adults? A 6-month randomized controlled trial with a 1-year follow-up. Clin Interv Aging 2015; 10: 1335–1349. doi: 10.2147/CIA.S87732. PMID: 26316729.
  37. Rahe J., Becker J., Fink G.R. et al. Cognitive training with and without additional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of training success. Front Aging Neurosci 2015; 7: 187. doi: 10.3389/fnagi.2015.00187. PMID: 26528177.
  38. Jehu D., Paquet N., Lajoie Y. Balance and mobility training with or without concurrent cognitive training does not improve posture, but improves reaction time in healthy older adults. Gait Posture. 2017; 52: 227–232. doi: 10.1016/j.gaitpost.2016.12.006. PMID: 27939652.
  39. Shatil E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front Aging Neurosci 2013; 5: 8. doi: 10.3389/fnagi.2013.00008. PMID: 23531885.
  40. Laatar R., Kachouri H., Borji R. et al. Combined physical-cognitive training enhances postural performances during daily life tasks in older adults. Exp Gerontol 2018; 107: 91–97. doi: 10.1016/j.exger.2017.09.004. PMID: 28899731.
  41. López-García J., Colado J.C., Guzmán J.F. Acute effects of aerobic exercise and active videogames on cognitive flexibility, reaction time, and perceived exertion in older adults. Games Health J 2019; 8: 371–379. doi: 10.1089/g4h.2018.0143. PMID: 31199694.
  42. Lee H.S., Park Y.J., Park S.W. The effects of virtual reality training on function in chronic stroke patients: a systematic review and meta-analysis. Biomed Res Int 2019; 2019: 7595639. doi: 10.1155/2019/7595639. PMID: 31317037.
  43. Kannan L., Vora J., Bhatt T., Hughes S.L. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial. NeuroRehabilitation 2019; 44: 493–510. doi: 10.3233/NRE-182683. PMID: 31256084.
  44. Bisson E., Contant B., Sveistrup H., Lajoie Y. Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. CyberPsychology Behav 2007; 10: 16–23. doi: 10.1089/cpb.2006.9997. PMID: 17305444.
  45. Kizony R., Levin M.F., Hughey L. et al. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment. Phys Ther 2010; 90: 252–260. doi: 10.2522/ptj.20090061. PMID: 20023003.
  46. Subramaniam S., Wan-Ying Hui-Chan C., Bhatt T. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors. J Neurol Phys Ther 2014; 38: 216–225. doi: 10.1097/NPT.0000000000000056. PMID: 25198867.
  47. Klochkov A.S., Khizhnikova A.E., Kotov-Smolenskiy A.M. et al. [Correction of static and dynamic balance using a virtual reality system in patients with cerebrovascular diseases]. Nervnyye bolezni 2018; (3): 28–32. doi: 10.24411/2071-5315-2018-12030. (In Russ.)
  48. Kim B.R., Chun M.H., Kim L.S., Park J.Y. Effect of Virtual Reality on Cognition in Stroke Patients. Ann Rehabil Med 2011; 35: 450–459. doi: 10.5535/arm.2011.35.4.450. PMID: 22506159.
  49. Laver K., George S., Thomas S. et al. Virtual reality for stroke rehabilitation: An abridged version of a Cochrane review. Eur J Phys Rehabil Med 2015; 51: 497–506. PMID: 26158918.
  50. Pietrzak E., Cotea C., Pullman S. Using commercial video games for falls prevention in older adults; the way for the future? J Geriatr Phys Ther 2014; 37: 166–177. doi: 10.1519/JPT.0b013e3182abe76e. PMID: 24406711.
  51. Rusák Z., Kooijman A., Song Y. et al. A Study of Correlations among Image Resolution, Reaction Time, and Extent of Motion in Remote Motor Interactions. Adv Human-Computer Interact. 2014;2014:1–11. doi: 10.1155/2014/463179
  52. Brand J., Piccirelli M., Hepp-Reymond M.C. et al. Virtual hand feedback reduces reaction time in an interactive finger reaching task. PLoS One 2016; 11: e0154807. doi: 10.1371/journal.pone.0154807. PMID: 27144927.
  53. Kwon M., Christou E.A. Visual information processing in older adults: reaction time and motor unit pool modulation. J Neurophysiol 2018; 120: 2630–2639. doi: 10.1152/jn.00161.2018. PMID: 30207861.
  54. Aminov A., Rogers J.M., Middleton S. et al. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J Neuroeng Rehabil 2018; 15: 29. doi: 10.1186/s12984-018-0370-2. PMID: 29587853.
  55. Baltaduonienė D., Kubilius R., Berškienė K. et al. Change of cognitive functions after stroke with rehabilitation systems. Transl Neurosci 2019; 10: 118–124. doi: 10.1515/tnsci-2019-0020. PMID: 31149357.
  56. Neri S.G.R., Cardoso J.R., Cruz L. et al. Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis. Clin Rehabil 2017; 31: 1292–1304. doi: 10.1177/0269215517694677. PMID: 28933612.
  57. Yeşilyaprak S.S., Yıldırım M.Ş., Tomruk M. et al. Comparison of the effects of virtual reality-based balance exercises and conventional exercises on balance and fall risk in older adults living in nursing homes in Turkey. Physiother Theory Pract 2016; 32: 191–201. doi: 10.3109/09593985.2015.1138009. PMID: 27049879.
  58. Huygelier H., Schraepen B., van Ee R. et al. Acceptance of immersive head-mounted virtual reality in older adults. Sci Rep 2019; 9: 4519. doi: 10.1038/s41598-019-41200-6. PMID: 30872760.
  59. Appel L., Appel E., Bogler O. et al. Older adults with cognitive and/or physical impairments can benefit from immersive virtual reality experiences: a feasibility study. Front Med 2020; 6: 329. doi: 10.3389/fmed.2019.00329. PMID: 32010701.
  60. Micarelli A., Viziano A., Micarelli B. et al. Vestibular rehabilitation in older adults with and without mild cognitive impairment: Effects of virtual reality using a head-mounted display. Arch Gerontol Geriatr 2019; 83: 246–256. doi: 10.1016/j.archger.2019.05.008. PMID: 31102927.
  61. Phu S., Vogrin S., Al Saedi A., Duque G. Balance training using virtual reality improves balance and physical performance in older adults at high risk of falls. Clin Interv Aging 2019; 14: 1567–1577. doi: 10.2147/CIA.S220890. PMID: 31695345.
  62. Sherrington C., Michaleff Z.A., Fairhall N. et al. Exercise to prevent falls in older adults: An updated systematic review and meta-analysis. Br J Sports Med 2017; 51: 1750–1758. doi: 10.1136/bjsports-2016-096547. PMID: 27707740.
  63. Hsieh C-C., Lin P-S., Hsu W.C. et al. The effectiveness of a virtual reality-based tai chi exercise on cognitive and physical function in older adults with cognitive impairment. Dement Geriatr Cogn Disord 2018; 46: 358–370. doi: 10.1159/000494659. PMID: 30537752.
  64. Montana J.I., Matamala-Gomez M., Maisto M. et al. The benefits of emotion regulation interventions in virtual reality for the improvement of wellbeing in adults and older adults: a systematic review. J Clin Med 2020; 9: 500. doi: 10.3390/jcm9020500. PMID: 32059514.

Statistics

Views

Abstract: 1095

PDF (Russian): 443

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2020 Klochkov A.S., Khizhnikova A.E., Fuks A.A., Kotov-Smolenskiy A.M., Suponeva N.A., Piradov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies