The relationship between the location of a lesion in the striatal dopaminergic innervation and its behavioral manifestation in a 6-hydroxydopamine-induced model of Parkinson's disease in rats

Abstract

Introduction. Animal modelling of Parkinson’s disease is an essential step in studying disease pathogenesis and searching for effective treatment methods. An accurate assessment of the resulting model is critical.

The aim of the study was to identify the correlation between the location of a lesion in the striatal dopaminergic innervation when the neurotoxin 6-hydroxydopamine (6-OHDA) was administered to rodents and the resulting behavior.

Materials and methods. The study was carried out on 75 male Wistar rats that received intranigral injection of 3 µl of 6-OHDA at a dose of 4 µg/µl. The animals were examined in the open field test and narrowing beam walking test 33 days after administration, after which some of the animals were decapitated (n = 25) for immunohistochemical analysis.

Results. The inactive animal group was statistically significantly different from the active animal group, with more pronounced damage to the dopamine endings in the dorsomedial (p = 0.0235) and ventral (p = 0.091) striatum. In contrast, in the active animals, the lesion was primarily in the dorsolateral striatum. In the inactive animal group, the mean distance travelled in the open field test was significantly shorter (p < 0.001), while freezing time (p < 0.0168) and the average score on the neuroticism scale (p < 0.001) were higher compared to the active animals. Spearman's correlation results showed a significant negative correlation (rS = –0.762; p < 0.0001) between tyrosine hydroxylase staining intensity in the dorsolateral striatum and freezing time in the open field test. No correlation was found between freezing time and damage to other striatal areas.

Conclusion. Damage to the dorsomedial and dorsolateral striatum causes less severe motor and emotional disturbances than damage to the ventral striatum. The narrowing beam walking test can be used to assess the presence and severity of striatal damage reliably. This evaluation is critical in studies of subsequent treatment efficacy to reduce Parkinsonian syndrome.

For citation: Stavrovskaya A.V., Voronkov D.N., Olshansky A.S., Gushchina A.S., Yamshikova N.G. [The relationship between the location of a lesion in the striatal dopaminergic innervation and its behavioral manifestation in a 6-hydroxydopamine-induced model of Parkinson's disease in rats]. Annals of clinical and experimental neurology 2021; 15(2): 42–49. (In Russ.) DOI: http://dx.doi.org/10.25692/ACEN.2021.2.6

About the authors

Alla V. Stavrovskaya

Research Center of Neurology, Moscow

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

Dmitry N. Voronkov

Research Center of Neurology, Moscow

Email: platonova@neurology.ru
Russian Federation

Artem S. Olshansky

Research Center of Neurology, Moscow

Email: platonova@neurology.ru
Russian Federation

Anastasia S. Gushchina

Research Center of Neurology, Moscow

Email: platonova@neurology.ru
Russian Federation

Nina G. Yamshikova

Research Center of Neurology, Moscow

Email: platonova@neurology.ru
Russian Federation

References

  1. Wirdefeldt K., Adami H.O., Cole P. et al. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011; 26(S1): 1–58. doi: 10.1007/s10654-011-9581-6. PMID: 21626386.
  2. Illarioshkin S.N. [Modern view on etiology of Parkinson’s disease]. Nevrologicheskiĭ zhurnal. 2015; 20(4): 4–13. (In Russ.)
  3. Savitt J.M., Dawson V.L., Dawson T.M. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006; 116(7): 1744–1754. doi: 10.1172/JCI29178. PMID: 16823471.
  4. Chaudhuri K.R., Schapira A.H. Non-motor symphoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009; 8(5): 464–474. doi: 10.1016/S1474-4422(09)70068-7. PMID: 19375664.
  5. Chung S.J., Yoo H.S., Oh J.S. et al. Effect of striatal dopamine depletion on cognition in de novo Parkinson's disease. Parkinsonism Relat Disord. 2018; 51: 43–48. doi: 10.1016/j.parkreldis.2018.02.048. PMID: 29526657.
  6. Kübler D., Schroll H., Buchert R., Kuhn A.A. Cognitive performance correlates with the degree of dopaminergic degeneration in the associative part of the striatum in non-demented Parkinson’s patients. J Neural Transm. 2017; 124(9): 1073–1081. doi: 10.1007/s00702-017-1747-2. PMID: 28643101.
  7. Weintraub D., Newberg A.B., Cary M.S. et al. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J Nucl Med. 2005; 46(2): 227–232. PMID: 15695780.
  8. Chung S.J., Lee J.J., Ham J.H. et al. Striatal dopamine depletion patterns and early non-motor burden in Parkinsons disease. PLoS One. 2016; 11(8): e0161316. doi: 10.1371/journal.pone.0161316. PMID: 27529171.
  9. Park S.B., Kwon K.Y., Lee J.Y. et al. Lack of association between dopamine transporter loss and non-motor symptoms in patients with Parkinson’s disease: a detailed PET analysis of 12 striatal subregions. Neurol Sci. 2019; 40: 311–317. doi: 10.1007/s10072-018-3632-7. PMID: 30415448.
  10. Blandini F., Armentero M.T. Animal models of Parkinson’s disease. FEBS J. 2012; 279: 1156–1166. doi: 10.1111/j.1742-4658.2012.08491.x. PMID: 22251459.
  11. Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 2004; 318(1): 215–224. doi: 10.1007/s00441-004-0938-y. PMID: 15503155.
  12. Shtock V.N., Levin O.S. [Clinical syndromological classification of extrapyramidal disorders]. Мoscow, 2014. 112 с. (In Russ.)
  13. Branchi I., D'Andrea I., Armida M. et al. Nonmotor symptoms in Parkinson's disease: Investigating early‐phase onset of behavioral dysfunction in the 6‐hydroxydopamine‐lesioned rat model. J Neurosci Res. 2008; 86(9): 2050–2061. doi: 10.1002/jnr.21642. PMID: 18335518.
  14. Henderson J.M., Watson S., Halliday G.M. et al. Relationships between various behavioural abnormalities and nigrostriatal dopamine depletion in the unilateral 6-OHDA-lesioned rat. Behav Brain Res. 2003; 139: 105–113. doi: 10.1016/S0166-4328(02)00087-6. PMID: 12642181.
  15. Schleimer S.B., Johnston G.A., Henderson J.M. Novel oral drug administration in an animal model of neuroleptic therapy. J Neurosci Methods. 2005; 146: 159–164. doi: 10.1016/j.jneumeth.2005.02.004. PMID: 16054505.
  16. Allbutt H., Henderson J. Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson’s disease. J Neurosci Meth. 2007; 159: 195–202. doi: 10.1016/j.jneumeth.2006.07.006. PMID: 16942799.
  17. Sweis B.M., Bachour S.P., Brekke J.A. et al. A modified beam-walking apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury. Behav Brain Res. 2016; 296: 149–156. doi: 10.1016/j.bbr.2015.09.015. PMID: 26367471.
  18. Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier, 2006. P. 456.
  19. Bolotova V.Ts., Krauz V.A., Shustov E.B. Biological model of experimental neurosis in laboratory animals. Biomeditsina. 2015; 1: 66–80. (In Russ.)
  20. Gerfen C.R., Herkenham M., Thibault J. The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J. Neurosci. 1987; 7(12): 3915–3934. doi: 10.1523/JNEUROSCI.07-12-03915.1987. PMID: 2891799.
  21. Karkischenko N.N., Grachev S.V. [A guide to laboratory animals and alternative models in biomedical technology]. Мoscow, 2010. 346 p. (In Russ.)
  22. Ungerstedt U., Ljungberg T., Steg G. Behavioral, physiological, and neurochemical changes after 6-hydroxy-dopamine-induced degeneration of the nigrostriatal dopamine neurons. Adv Neurol. 1974; 5: 421–426.
  23. Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol. 2013; 22: 11–17. doi: 10.5607/en.2013.22.1.11. PMID: 23585717.
  24. Hernandez-Baltazar D., Mendoza-Garrido M., Martinez-Fong D. Activation of GSK-3β and caspase-3 occurs in Nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PLoS One. 2013; 8(8): e70951. doi: 10.1317/journal.pone.0070951. PMID: 23940672.
  25. Hernandez-Baltazar D., Zavala-Flores L.M., Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: novel findings in an older model. Neurologia. 2017; 32(8): 533–539. doi: 10.1016/j.nrleng.2015.06.019. PMID: 26304655.
  26. Bywood P.T., Johnson S.M. Differential vulnerabilities of substantia nigra catecholamine neurons to excitatory amino acid-induced degeneration in rat midbrain slices. Exp Neurol. 2000; 162(1): 180–188. doi: 10.1006/exnr.2000.7310. PMID: 10716898.
  27. Voronkov D.N., Dikalova Yu.V., Khudoerkov R.M., Yamshchikova N.G. Brain nigrostriatal system changes in rotenone-induced parkinsonism (quantitative immune-morphological study). Annals of clinical and experimental neurology. 2013; 7(2): 34–38. (In Russ.)
  28. Hunnicutt B.J., Jongbloets B.C., Birdsong W.T. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. Elife. 2016; 28; 5: e19103. doi: 10.7554/eLife.19103. PMID: 27892854.
  29. Yin H.H., Knowlton B.J. Contributions of striatal subregions to place and response learning. Learn Mem. 2004; 11(4): 459–463. doi: 10.1101/lm.81004. PMID: 15286184.
  30. Lex B., Sommer S., Hauber W. The role of dopamine in the dorsomedial striatum in place and response learning. Neuroscience. 2011; 172: 212–218. doi: 10.1016/j.neuroscience.2010.10.081. PMID: 21056091.
  31. Keiflin R., Janak P.H. Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry. Neuron. 2015; 88: 247–263. doi: 10.1016/j.neuron.2015.08.037. PMID: 26494275.
  32. Jiang H., Kim H.F. Anatomical inputs from the sensory and value structures to the tail of the rat striatum. Front Neuroanat. 2018; 12: 30. doi: 10.3389/fnana.2018.00030. PMID: 29773980.
  33. Parker N.F., Cameron C.M., Taliaferro J.P. et al. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat Neurosci. 2016; 19(6): 845–854. doi: 10.1038/nn.4287. PMID: 27110917.
  34. Brimblecombe K. The striosome and matrix compartments of the striatum: a path through the labyrynth from neurochemistry toward function. ACS Chemical Neurosci. 2017; 8: 235–242. doi: 10.1021/acschemneuro.6b00333. PMID: 27977131.
  35. Crittenden R., Graybiel A.M. Disease-associated changes in the striosome and matrix compartments of the dorsal striatum. In: Steiner H., Tseng K.Y. (eds.) Handbook of Behavioral Neuroscience. Elsevier, 2016; 24: 783–802. DOI: 0.1016/B978-0-12-802206-1.00039-8.
  36. Miyamoto Y., Katayama S., Shigematsu N. et al. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Struct Funct. 2018; 223: 4275–4291. doi: 10.1007/s00429-018-1749-3. PMID: 30203304.
  37. Stavrovskaya A.V., Voronkov D.N., Yamshchikova N.G. et al. Morphochemical evaluation of neurotransplantation outcomes in experimental parkinsonism. Annals of clinical and experimental neurology. 2015; 9(2): 28–32. (In Russ.)

Statistics

Views

Abstract: 192

PDF (Russian): 131

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2021 Stavrovskaya A.V., Voronkov D.N., Olshansky A.S., Gushchina A.S., Yamshikova N.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies