Опыт экспериментального моделирования болезни Гентингтона
- Авторы: Ставровская А.В.1, Воронков Д.Н.1, Ямщикова Н.Г.1, Ольшанский А.С.1, Худоерков Р.М.1, Иллариошкин С.Н.1
-
Учреждения:
- ФГБНУ «Научный центр неврологии»
- Выпуск: Том 9, № 3 (2015)
- Страницы: 49-55
- Раздел: Оригинальные статьи
- Дата подачи: 01.02.2017
- Дата публикации: 09.02.2017
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/137
- DOI: https://doi.org/10.17816/psaic137
- ID: 137
Цитировать
Полный текст
Аннотация
Болезнь Гентингтона (БГ) является аутосомно-доминантным нейродегенеративным заболеванием и характеризуется хореическим гиперкинезом, снижением когнитивных функций, поведенческими расстройствами и прогрессирующей гибелью нейронов, поражающей, прежде всего, стриатум. В силу фатального характера БГ актуальным является поиск эффективных методов ее лечения, для чего требуется разработка экспериментальных моделей данного заболевания. Такая модель может быть создана с помощью 3-нитропропионовой кислоты (3-НПК) – нейротоксина, вызывающего характерные изменения моторики и ухудшение памяти у животных в результате индукции окислительного стресса, нарушения глутатионовой защиты и поражения клеток полосатого тела. БГ у крыс моделировалась хроническом введением 3-НПК внутрибрюшинно, ежедневно в течение 17 дней. Системное введение низкой дозы 3-НПК (10 мг/кг) вызывало гиперактивность животных в «открытом поле» (включая избыточность движений как аналог гиперкинезов) и не оказывало влияния на поведение животных в X-лабиринте. Напротив, при введении токсической дозы 3-НПК (20 мг/кг) крысы демонстрировали значительное снижение двигательной активности и ослабление когнитивных функций во время поведенческих исследований. Гистопатологический анализ выявил повреждение и гибель нейронов и снижение экспрессии дофаминергических маркеров (тирозингидроксилазы и мембранного переносчика дофамина) в стриатуме. Также обнаружили глиотоксическое действие 3-НПК в стриатуме, подтвержденное иммуно-гистохимическим окрашиванием на астроцитарные белки: GFAP, глутаминсинтетазу и аквапорин-4. Данная модель БГ может быть полезной для тестирования новых экспериментальных видов терапии на различных стадиях нейродегенерации «гентингтоновского» типа, в т.ч. основанных на клеточной нейротрансплантации.
Об авторах
Алла Вадимовна Ставровская
ФГБНУ «Научный центр неврологии»
Автор, ответственный за переписку.
Email: alla_stav@mail.ru
Россия, Москва
Дмитрий Николаевич Воронков
ФГБНУ «Научный центр неврологии»
Email: alla_stav@mail.ru
Россия, Москва
Нина Гавриловна Ямщикова
ФГБНУ «Научный центр неврологии»
Email: alla_stav@mail.ru
Россия, Москва
Артем Сергеевич Ольшанский
ФГБНУ «Научный центр неврологии»
Email: alla_stav@mail.ru
Россия, Москва
Рудольф Михайлович Худоерков
ФГБНУ «Научный центр неврологии»
Email: alla_stav@mail.ru
Россия, Москва
Сергей Николаевич Иллариошкин
ФГБНУ «Научный центр неврологии»
Email: alla_stav@mail.ru
ORCID iD: 0000-0002-2704-6282
д.м.н., проф., член-корр. РАН, зам. директора по научной работе, рук. отдела исследований мозга
Россия, МоскваСписок литературы
- Иллариошкин С.Н. Возрастные расстройства памяти и внимания: механизмы развития и возможности нейротрансмиттерной терапии. Неврол. журн. 2007; 2: 34–40.
- Иллариошкин С.Н., Иванова-Смоленская И.А., Маркова Е.Д. Новый механизм мутации у человека: экспансия тринуклеотидных повторов (обзор). Генетика 1995; 31: 1478–1489.
- Aketa S., Nakase H., Kamada Y. et al. Chemical preconditioning with 3-nitropropionic acid in gerbil hippocampal slices: therapeutic window and the participation of adenosine receptor. Exp. Neurol. 2000; .166:385–391.
- Alexi T., Hughes P.E., Faull R.L., Williams C.E. 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. Neuroreport 1998; 9: 57–64.
- Alston T.A., Mela L., Bright H.J. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase Proc. Natl. Acad. Sci. USA 1977; 74: 3767–3771.
- Beal M.F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 1992; 31: 119–130.
- Beal M.F., Brouillet E., Jenkins B.G. et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 1993; 13:4181–4192.
- Becker S., Lim J. A computational model of prefrontal control in free recall: strategic memory use in the California Verbal Learning Task. J.Cogn. Neurosci. 2003; 15: 821–832.
- Blesa J., Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front. Neuroanat. 2014; 8: 155.
- Borlongan C.V., Koutouzis T.K., Freeman T.B. et al. Hyperactivity and hypoactivity in a rat model of Huntington’s disease: The systemic 3-nitropropionic acid model. Brain Res. Protoc. 1997; 1: 253–257.
- Brouillet E., Conde F., Beal M., Hantraye P. Replicating Huntington’s desease phenotype in experimental animals. Prog. Neurobiol. 1999; 59: 427–468.
- Brouillet E., Jacquard C., Bizat N., Blum D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem. 2005; 95: 1521–1540.
- Brouillet E., Jenkins B., Hyman B. et al. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 1993; 60: 356–359.
- Choo Y.S., Johnson G.V., MacDonald M. et al. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 2004; 13: 1407–1420.
- Fukuda A.M., Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J. Neuroinflammation 2012; 9: 279.
- Herrera-Mundo N., Sitges M. Mechanisms underlying striatal vulnerability to 3-nitropropionic acid. J. Neurochem. 2010; 114: 597–605.
- Kendall A., Hantraye P., Palfi S. Striatal tissue transplantation in non-human primates. Prog. Brain Res. 2000; 127: 381–404.
- Kozina E.A., Khakimova G.R., Khaindrava V.G. et al. Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism. J. Neurol. Sci. 2014; 340: 198–207.
- Kumar P., Kumar A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: A novel nitric oxide mechanism. Food Chem. Toxicol. 2009; 47: 2522–2530
- Kumar P., Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s-like symptoms in rats: Possible role of nitric oxide Behav. Brain Res. 2010; 206: 38–46.
- Kumar P., Padi S.S., Naidu P.S., Kumar A. Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms Fundam. Clin. Pharmacol. 2007; 21:297–306.
- Lee W.T., Yin H.S., Shen Y.Z. The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of Nmethyl-D-aspartate glutamate receptors and mitochondrial calcium overload. Neuroscience 2002; 112: 707–716.
- Mehrotra A., Sandhir R. Mitochondrial cofactors in experimental Huntington’s disease:Behavioral, biochemical and histological evaluation. Behav. Brain Res. 2014; 261: 345–355.
- Nishino H., Hida H., Kumazaki M. et al. The striatum is the most vulnerable region in the brain to mitochondrial energy compromise: a hypothesis to explain its specific vulnerability. J. Neurotrauma 2000; 17:251–260.
- Nishino H., Kumazaki M., Fukuda A. et al., Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. Neurosci. Res. 1997; 27: 343–355.
- Ouary S., Bizat N., Altairac S., Menetrat H. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: Implications for neuroprotection studies. Neuroscience 2000; 97: 521–530.
- Pandey M., Borah A., Varghese M. et al. Striatal dopamine level contributes to hydroxyl radical generation and subsequent neurodegeneration in the striatum in 3-nitropropionic acid-induced Huntington’s disease in rats. Neurochem. Intern. 2009; 55: 431–437.
- Patocka J., Bielavsky J., Cabal J., Fusek J. 3-Nitropropionic acid and similar nitro- toxins. Acta Medica (Hradec Kralove) 2000; 43: 9–13.
- Ramaswany S., McBride J., Kordower J. Animal models of Huntington’s desease. ILAR J. 2007; 48: 356–373.
- Sandhir R., Mehrotra A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim. Biophys. Acta 2013; 1832: 421–430.
- Sandhir R., Sood A., Mehrotra A., Kamboj S. N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington’s disease. Neurodegener. Dis. 2012; 9: 145–157.
- Stelmashook E.V., Isaev N.K., Lozier E.R. et al. Role of glutamine in neuronal survival and death during brain ischemia and hypoglycemia. Int. J. Neurosci. 2011; 121: 415–422.
- The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971–983.
- Tunez I., Tasset I., Perez-De La Cruz V., Santamaria A. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future Molecules 2010; 15: 878–916.
- Van Raamsdonk J.M. et al. Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 2005; 14: 3823–3835.
- Villalba R.M., Smith Y. Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J. Comp. Neurol. 2011; 519: 989–1005.
- Wüllner U., Young A.B., Penney J.B., Beal M.F. 3-Nitropropionic acid toxicity in the striatum. J. Neurochem. 1994; 63: 1772–1781.