Experience of experimental simulation of Huntington’s disease
- Authors: Stavrovskaya A.V.1, Voronkov D.N.1, Yamshchikova N.G.1, Olshansky A.S.1, Khudoerkov R.M.1, Illarioshkin S.N.1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 9, No 3 (2015)
- Pages: 49-55
- Section: Original articles
- Submitted: 01.02.2017
- Published: 09.02.2017
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/137
- DOI: https://doi.org/10.17816/psaic137
- ID: 137
Cite item
Full Text
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease characterized by choreic hyperkinesia, cognitive decline, behavioral disorders, and progressive neuronal death affecting primarily the striatum. The fatal nature of HD makes searching for new effective methods of treatment topical, which requires the development of experimental models of the disease. This model can be created on the basis of 3-nitropropionic acid (3-NPA) that is a neurotoxin causing characteristic changes in motor skills and memory impairment in animals due to induction of oxidative stress, impaired glutathione defense, and destruction of striatal cells. HD in rats was simulated by chronic intraperitoneal administration of 3-NPA daily for 17 days. Systemic administration of a low dose of 3-NPA (10 mg/ kg) induced hyperactivity of the animals in the open field test (including movement redundancy as a hyperkinesia analogue) and had no effect on the behavior of the animals in the X-maze test. On the contrary, rats administered with a toxic dose of 3-NPA (20 mg/kg) demonstrated a significant decrease in the motor activity an cognitive decline in behavioral tests. Histopathological analysis revealed damage and loss of neurons and decreased expression of dopaminergic markers (tyrosine hydroxylases and plasma membrane dopamine transporter) in the striatum. Also, a gliotoxic effect of 3-NPA in the striatum was found, which was confirmed by immunohistochemical staining for astrocytic proteins: GFAP, glutamine synthetase, and aquaporin-4. This HD model may be helpful for testing new experimental therapies at various stages of neurodegeneration of the Huntington type, including those based on cell neurotransplantation.
About the authors
Alla V. Stavrovskaya
Research Center of Neurology
Author for correspondence.
Email: alla_stav@mail.ru
Россия, Moscow
Dmitry N. Voronkov
Research Center of Neurology
Email: alla_stav@mail.ru
Россия, Moscow
Nina G. Yamshchikova
Research Center of Neurology
Email: alla_stav@mail.ru
Россия, Moscow
Artem S. Olshansky
Research Center of Neurology
Email: alla_stav@mail.ru
Россия, Moscow
Rudolf M. Khudoerkov
Research Center of Neurology
Email: alla_stav@mail.ru
Россия, Moscow
Sergey N. Illarioshkin
Research Center of Neurology
Email: alla_stav@mail.ru
ORCID iD: 0000-0002-2704-6282
D. Sci. (Med.), Prof., Corr. Member of the Russian Academy of Sciences, Deputy Director, Head, Department for brain research
Россия, MoscowReferences
- Иллариошкин С.Н. Возрастные расстройства памяти и внимания: механизмы развития и возможности нейротрансмиттерной терапии. Неврол. журн. 2007; 2: 34–40.
- Иллариошкин С.Н., Иванова-Смоленская И.А., Маркова Е.Д. Новый механизм мутации у человека: экспансия тринуклеотидных повторов (обзор). Генетика 1995; 31: 1478–1489.
- Aketa S., Nakase H., Kamada Y. et al. Chemical preconditioning with 3-nitropropionic acid in gerbil hippocampal slices: therapeutic window and the participation of adenosine receptor. Exp. Neurol. 2000; .166:385–391.
- Alexi T., Hughes P.E., Faull R.L., Williams C.E. 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. Neuroreport 1998; 9: 57–64.
- Alston T.A., Mela L., Bright H.J. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase Proc. Natl. Acad. Sci. USA 1977; 74: 3767–3771.
- Beal M.F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 1992; 31: 119–130.
- Beal M.F., Brouillet E., Jenkins B.G. et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 1993; 13:4181–4192.
- Becker S., Lim J. A computational model of prefrontal control in free recall: strategic memory use in the California Verbal Learning Task. J.Cogn. Neurosci. 2003; 15: 821–832.
- Blesa J., Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front. Neuroanat. 2014; 8: 155.
- Borlongan C.V., Koutouzis T.K., Freeman T.B. et al. Hyperactivity and hypoactivity in a rat model of Huntington’s disease: The systemic 3-nitropropionic acid model. Brain Res. Protoc. 1997; 1: 253–257.
- Brouillet E., Conde F., Beal M., Hantraye P. Replicating Huntington’s desease phenotype in experimental animals. Prog. Neurobiol. 1999; 59: 427–468.
- Brouillet E., Jacquard C., Bizat N., Blum D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem. 2005; 95: 1521–1540.
- Brouillet E., Jenkins B., Hyman B. et al. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 1993; 60: 356–359.
- Choo Y.S., Johnson G.V., MacDonald M. et al. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 2004; 13: 1407–1420.
- Fukuda A.M., Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J. Neuroinflammation 2012; 9: 279.
- Herrera-Mundo N., Sitges M. Mechanisms underlying striatal vulnerability to 3-nitropropionic acid. J. Neurochem. 2010; 114: 597–605.
- Kendall A., Hantraye P., Palfi S. Striatal tissue transplantation in non-human primates. Prog. Brain Res. 2000; 127: 381–404.
- Kozina E.A., Khakimova G.R., Khaindrava V.G. et al. Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism. J. Neurol. Sci. 2014; 340: 198–207.
- Kumar P., Kumar A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: A novel nitric oxide mechanism. Food Chem. Toxicol. 2009; 47: 2522–2530
- Kumar P., Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s-like symptoms in rats: Possible role of nitric oxide Behav. Brain Res. 2010; 206: 38–46.
- Kumar P., Padi S.S., Naidu P.S., Kumar A. Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms Fundam. Clin. Pharmacol. 2007; 21:297–306.
- Lee W.T., Yin H.S., Shen Y.Z. The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of Nmethyl-D-aspartate glutamate receptors and mitochondrial calcium overload. Neuroscience 2002; 112: 707–716.
- Mehrotra A., Sandhir R. Mitochondrial cofactors in experimental Huntington’s disease:Behavioral, biochemical and histological evaluation. Behav. Brain Res. 2014; 261: 345–355.
- Nishino H., Hida H., Kumazaki M. et al. The striatum is the most vulnerable region in the brain to mitochondrial energy compromise: a hypothesis to explain its specific vulnerability. J. Neurotrauma 2000; 17:251–260.
- Nishino H., Kumazaki M., Fukuda A. et al., Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. Neurosci. Res. 1997; 27: 343–355.
- Ouary S., Bizat N., Altairac S., Menetrat H. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: Implications for neuroprotection studies. Neuroscience 2000; 97: 521–530.
- Pandey M., Borah A., Varghese M. et al. Striatal dopamine level contributes to hydroxyl radical generation and subsequent neurodegeneration in the striatum in 3-nitropropionic acid-induced Huntington’s disease in rats. Neurochem. Intern. 2009; 55: 431–437.
- Patocka J., Bielavsky J., Cabal J., Fusek J. 3-Nitropropionic acid and similar nitro- toxins. Acta Medica (Hradec Kralove) 2000; 43: 9–13.
- Ramaswany S., McBride J., Kordower J. Animal models of Huntington’s desease. ILAR J. 2007; 48: 356–373.
- Sandhir R., Mehrotra A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim. Biophys. Acta 2013; 1832: 421–430.
- Sandhir R., Sood A., Mehrotra A., Kamboj S. N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington’s disease. Neurodegener. Dis. 2012; 9: 145–157.
- Stelmashook E.V., Isaev N.K., Lozier E.R. et al. Role of glutamine in neuronal survival and death during brain ischemia and hypoglycemia. Int. J. Neurosci. 2011; 121: 415–422.
- The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971–983.
- Tunez I., Tasset I., Perez-De La Cruz V., Santamaria A. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future Molecules 2010; 15: 878–916.
- Van Raamsdonk J.M. et al. Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 2005; 14: 3823–3835.
- Villalba R.M., Smith Y. Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J. Comp. Neurol. 2011; 519: 989–1005.
- Wüllner U., Young A.B., Penney J.B., Beal M.F. 3-Nitropropionic acid toxicity in the striatum. J. Neurochem. 1994; 63: 1772–1781.