Значение состояния различных проводящих путей головного мозга в восстановлении функции ходьбы у пациентов, перенесших инсульт
- Авторы: Кадыков А.С.1, Бархатов Ю.Д.1
-
Учреждения:
- ФГБНУ «Научный центр неврологии»
- Выпуск: Том 8, № 3 (2014)
- Страницы: 45-48
- Раздел: Обзоры
- Дата подачи: 01.02.2017
- Дата публикации: 09.02.2017
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/172
- DOI: https://doi.org/10.17816/psaic172
- ID: 172
Цитировать
Полный текст
Аннотация
Кортикоспинальный тракт (КСТ) является важнейшим проводящим путем головного мозга, участвующим в осуществлении двигательной деятельности, однако не до конца ясна функциональная роль и КСТ, и других проводящих путей в реализации такой социально значимой функции, как ходьба у больных, перенесших инсульт. После поражения КСТ происходит структурная реорганизация не только самого КСТ с обеих сторон, но и других проводящих путей, в том числе относящихся к экстрапирамидной системе: кортикоретикулярного (КРПП) и кортикоруброспинального (КРСТ) трактов. С помощью современных методов нейровизуализации показано, что Валлеровская дегенерация КСТ не является единственным предиктором неблагоприятного восстановления двигательных функций после инсульта, в то время как компенсаторное увеличение объема волокон КРПП в неповрежденном полушарии может положительно влиять на восстановление функции паретичной ноги. Проведение дальнейших исследований по изучению функционального значения КРПП, КРСТ и других проводящих путей в восстановлении функции ходьбы у постинсультных больных позволит уточнить механизмы нейропластичности и прогностические факторы восстановления с целью оптимизации персонифицированного подхода к реабилитации постинсультных пациентов.
Ключевые слова
Об авторах
Альберт Серафимович Кадыков
ФГБНУ «Научный центр неврологии»
Email: yuri-mozg110889@yandex.ru
ORCID iD: 0000-0001-7491-7215
д.м.н., проф., г.н.с. 3-го неврологического отделения
Россия, МоскваЮрий Дмитриевич Бархатов
ФГБНУ «Научный центр неврологии»
Автор, ответственный за переписку.
Email: yuri-mozg110889@yandex.ru
Россия, Москва
Список литературы
- Антонен Е.Г. Проводящие пути спинного мозга (анатомо-физиологические и неврологические аспекты): учебное пособие. Петрозаводск: Изд-во ПетрГУ, 2001.
- Баркер Р., Барази С., Нил М. Наглядная неврология: Учебное пособие. Под редакцией Скворцовой В.И. М.: ГЭОТАР-Медиа, 2006.
- Бушенева С.Н., Кадыков А.С., Черникова Л.А. Влияние восстановительной терапии на фунциональную организацию двигательных систем после инсульта. Анн. клин. и эксперим. неврол. 2007; 2 (1): 4–8.
- Данилова H.H. Физиология высшей нервной деятельности. Ростов-на-Дону: «Феникс», 2005.
- Добрынина Л.А., Коновалов Р.Н., Кремнева Е.И., Кадыков А.С. МРТ в оценке двигательного восстановления больных с хроническими супратенториальными инфарктами. Анн. клин. и эксперим. неврол. 2012; 2 (6): 4–10.
- Добрынина Л.А. Возможности функциональной и структурной нейровизуализации в изучении восстановления двигательных функций после ишемического инсульта. Анн. клин. и эксперим.неврол. 2011; 3 (5): 53–61.
- Кадыков А.С., Черникова Л.А., Шахпаронова Н.В. Реабилитация неврологических больных. М: МЕДпресс-информ, 2008.
- Кадыков А.С. Реабилитация после инсульта. М: Миклош, 2005.
- Костенко Е.В., Петрова Л.В., Лебедева А.В., Бойко А.Н. Комплексная реабилитация пациентов с постинсультной спастичностью в амбулаторно-поликлинических условиях. Нервные болезни 2013; 3: 30–38.
- Суслина З.А., Варакин Ю.Я., Верещагин Н.В. Сосудистые заболевания головного мозга: Эпидемиология. Основы профилактики. М: МЕДпресс-информ, 2006.
- Суслина З.А., Иллариошкин С.Н., Пирадов М.А. Неврология и нейронауки – прогноз развития. Анн. клин. и эксперим. неврол. 2007; 1 (1): 5–9.
- Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. М.: Аспект Пресс, 2000.
- Bestmann S., Swayne O., Blankenburg F. et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J. Neurosci. 2010; 30: 11926–11937.
- Cho H.M., Choi B.Y., Chang C.H. et al. The clinical characteristics of motor function in chronic hemiparetic stroke patients with complete corticospinal tract injury. NeuroRehabilitation 2012; 31: 207–213.
- Do K.H., Yeo S.S., Lee J., Jang S.H. Injury of the corticoreticular pathway in patients with proximal weakness following cerebral infarct: diffusion tensor tractography study. Neurosci Lett. 2013; 546: 21–215.
- Jang S.H., Chang C.H., Lee J. et al. Functional role of the corticoreticular pathway in chronic stroke patients. Stroke 2013; 44: 1099–1104.
- Jang S.H. The role of the corticospinal tract in motor recovery in patients with a stroke: A review. NeuroRehabilitation. 2009; 24(3): 285–290.
- Jayaram G., Stagg C.J., Esser P. et al. Relationships between functional and structural corticospinal tract integrity and walking post stroke. Clin. Neurophysiol. 2012; 123: 2422–2428.
- Kim E.H., Lee J., Jang S.H. Motor outcome prediction using diffusion tensor tractography of the corticospinal tract in large middle cerebral artery territory infarct. NeuroRehabilitation 2013; 32: 583–590.
- Kuhn M.J., Johnson K.A., Davis K.R. et al. Wallerian degeneration: evaluation with MR imaging. Radiology 1988; 168: 199–202.
- Lindenberg R., Zhu L.L., Rüber T., Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum. Brain Mapp. 2012; 33: 1040–1051.
- Miyai I., Suzuki T., Kang J. et al. Middle cerebral artery stroke that includes the premotor cortex reduces mobility outcome. Stroke 1999;30: 1380–1383.
- Orita T., Tsurutani T., Izumihara A., Kajiwara K. Early, evolving Wallerian degeneration of the pyramidal tract in cerebrovascular diseases: MR study. J. Comput. Assist. Tomogr. 1994; 18: 943–946.
- Pierpaoli C., Jezzard P., Basser P.J. et al. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201: 637–648.
- Puig J., Blasco G., Daunis-I.-Estadella J. et al. Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. Stroke 2013; 44: 2016–2018.
- Puig J., Blasco G., Daunis-I.-Estadella J. et al. Increased corticospinal tract fractional anisotropy can discriminate stroke onset within the first 4.5 hours. Stroke 2013; 44: 1162–1165.
- Ruber T., Schlaug G., Lindenberg R. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke. Neurology 2012;79: 515–522.
- Schaechter J.D., Fricker Z.P., Perdue K.L. et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009; 30: 3461–3474.
- Schulz R., Park C.H., Boudrias M.H. et al. Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke 2012; 43: 2248–2251.
- Song F., Zhang F., Yin D.Z. et al. Diffusion tensor imaging for predicting hand motor outcome in chronic stroke patients. J. Int. Med. Res. 2012; 40: 126–133.
- Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov. Disord. 2013; 28: 1483–1491.
- Thomalla G., Glauche V., Koch M.A. et al. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 2004; 22: 1767.
- Werring D.J., Toosy A.T., Clark C.A. et al. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke J. Neurol. Neurosurg. Psychiatry 2000; 69: 269–272.
- Yin D., Yan X., Fan M. et al. Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function. AJNR Am. J. Neuroradiol. 2013; 34: 1341–1347.