Роботизированные системы в нейрореабилитации

Обложка


Цитировать

Полный текст

Аннотация

Среди новейших технологий в реабилитации больных, перенесших инсульт, особое место занимает робот-терапия, которая в большей степени, чем другие технологии, воплощает основные принципы современной теории двигательного обучения. В обзоре анализируется современное состояние исследований по применению робот-терапии в реабилитации больных, перенесших инсульт. Обсуждаются преимущества использования этой новой технологии, связанные с широкими возможностями моделирования параметров тренировок, непрерывным компьютерным анализом, контролем произвольного участия пациента, возможностью проведения длительных тренировок с высокой повторяемостью движений, близких к физиологическому паттерну. Рассматриваются перспективы развития роботизированных систем в нейрореабилитации.

Об авторах

Людмила Александровна Черникова

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: luda_cher44@mail.ru
Россия, Москва

Список литературы

  1. Кадыков А.С., Черникова Л.А., Шахпаронова Н.В. Реабилитация неврологических больных. М.: МЕДпресс-информ, 2008.
  2. Суслина З.А., Варакин Ю.Я., Верещагин Н.В. Сосудистые заболевания головного мозга. Эпидемиология. Патогенетические механизмы. Профилактика. М.: МЕДпресс-информ., 2009.
  3. Тарасова Л.Г., Черникова Л.А., Чубуков А.С. Применение метода форсированной тренировки паретичных конечностей как новый подход в реабилитации больных с постинсультными гемипарезами. Физиотерапия, реабилитация и бальнеология 2008; 1: 33–35.
  4. Черникова Л.А. Пластичность мозга и современные реабилитационные технологии. Анналы клин. и эксперим. неврологии 2007; 2: 40–47.
  5. Черникова Л.А., Демидова А.Е., Домашенко М.А. и др. Эффект применения роботизированных устройств («Эриго» и «Локомат») в ранние сроки после ишемического инсульта. Вестн. восстан. мед. 2008; 6: 6–10.
  6. Barbeau H., Visintin M. Optimal outcomes obtained with bodyweight support combined with treadmill training in stroke subjects. Arch. Phys. Med. Rehabil. 2003; 84: 1458–1465.
  7. Boake C., Noser E.A., Ro T. et al. Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabil. Neural. Repair 2007; 21: 14–24.
  8. Broga°rdh C., Sjo••lund B.H. Constraint-induced movement therapy in patients with stroke: a pilot study on effects of small group training and of extended mitt use. Clin. Rehabil. 2006; 20: 218–227.
  9. Burgar C.G., Lum P.S., Shor P.C. et al. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 2000; 37: 663–673.
  10. Chouinard P.A., Leonard G., Paus T. Changes in effective connectivity of the primary motor cortex in stroke patients after rehabilitative therapy. Exp. Neurol. 2006; 201: 375–387.
  11. Colombo G., Hostettler P. Der Lokomat – eine angetriebene GehOrthese. Med. Orth. Tech. 2000; 120: 178–181.
  12. Doeringer J.A., Hogan N. Performance of above elbow body-powered prostheses in visually guided unconstrained motion tasks. IEEE Trans. Biomed. Eng. 1995; 42: 621–631.
  13. Dromerick A.W., Edwards D.F., Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke 2000; 31: 2984–2988.
  14. Fasoli S.E., Krebs H.I., Stein J. et al. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch. Phys. Med. Rehabil. 2003; 84: 477–482.
  15. Hesse S. Locomotor therapy in neurorehabilitation. NeuroRehabilitation 2001; 16 : 133–139.
  16. Hesse S., Bertelt C., Schaffrin A. et al. Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body weight support. Arch. Phys. Med. Rehabil. 1994; 75: 1087–093.
  17. Hesse S., Sarkodie-Gyan T., Uhlenbrock D. Development of an advanced mechanized gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects. Biomed. Tech. (Berl). 1999; 44: 194–201.
  18. Hesse S., Schulte-Tigges G., Konrad M. et al. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 2003; 84: 915–920.
  19. Hesse S., Werner C., Pohl M. et al. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 2005; 36: 1960–1966.
  20. Hidler J. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil. Neural Repair 2009; 23: 5–13.
  21. Husemann B., Mu••ller F., Krewer C. et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007; 38: 349–354.
  22. Hussein S., Schmidt H., Volkmar M. et al. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008: 1961–1964.
  23. Kleim J.A., Barbay S., Cooper N.R. et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 2002; 77: 63–77.
  24. Kwakkel G., Kollen B.J., Krebs H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 2008; 22: 111–121.
  25. Liepert J. Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cogn. Behav. Neurol. 2006; 19: 41–47.
  26. Liepert J., Graef S., Uhde I. et al. Training-induced changes of motor cortex representations in stroke patients. Acta Neurol. Scand. 2000; 101: 321–326.
  27. Luke L.M., Allred R.P., Jones T.A. Unilateral ischemic sensorimotor cortical damage induces contralesional synaptogenesis and enhances skilled reaching with the ipsilateral forelimb in adult male rats. Synapse 2004; 54: 187–199.
  28. Lum P.S., Burgar C.G., Shor P.C. et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002; 83: 952–959.
  29. Lum P.S., Burgar C.G., Van der Loos M. et al. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J. Rehabil. Res. Dev. 2006; 43: 631–642.
  30. Mayr A., Kofler M., Quirbach E. et al. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil. Neural Repair 2007; 21: 307–314.
  31. Mehrholz J., Platz T., Kugler J. et al. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst. Rev. 2008; 8: CD006876.
  32. Ng M.F., Tong R.K., Li L.S. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation. Six-month follow-up. Stroke 2008; 39: 154–160.
  33. Platz T. Impairment-oriented training (IOT)-scientific concept and evidence-based treatment strategies. Restor. Neurol. Neurosci. 2004; 22: 301–315.
  34. Pohl M., Werner C., Holzgraefe M. et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin. Rehabil. 2007; 21: 17–27.
  35. Prange G.B., Jannink M.J., GroothuisТOudshoorn C.G. et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 2006; 43: 171–184.
  36. Remple M.S., Bruneau R.M., VandenBerg P.M. et al. Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav. Brain Res. 2001; 123: 133–141.
  37. Ro T., Noser E., Boake C. et al. Functional reorganization and recovery after constraint-induced movement therapy in subacute stroke: case reports. Neurocase 2006; 12: 50–60.
  38. Suputtitada A., Yooktanan P., Rarerng-Ying T. Effect of partial body weight support treadmill training in chronic stroke patients. J. Med. Assoc. Thai 2004; 87 (Suppl 2): S107–S111.
  39. Taub E., Miller N.E., Novack T.A. et al. Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehab.1993; 74: 347–354.
  40. Visintin M., Barbeau H., Korner-Bitensky N. et al. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998; 29: 1122–1128.
  41. Wolf S.L., Lecraw D.E., Barton L.A. et al. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp. Neurol. 1989; 104: 125–132.
  42. Wolf S.L., Winstein C.J., Miller J.P. et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006; 296: 2095–2104.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Chernikova L.A., 2009

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах