Demyelinating optical neuritis: correlation of data of optical coherence tomography and multifocal electroretinography

Cover Page


Cite item

Abstract

The analysis of optical coherence tomography and multifocal electroretinography (mfERG) at 61 hexagons data is presented in three groups of patients: (1) with multiple sclerosis (MS) and optical neuritis (ON) (14 patients), (2) with ON of unknown etiology (19 patients), and (3) with ON of infectious etiology (12 patients). In patients with MS, the correlation of the P1 component latency of mfERG in the perifovea with retinal thickness in the central zone in all quadrants of fundus (except superior), as well as with the total macular volume was revealed, that allows using this mfERG parameter as a marker of MS progressing. The results of our study showed that the calculation of the ratio in the density of P1 R1/Rx may be recommended as an additional marker of acute process in functional diagnosis. Patients with ON of infectious etiology were characterized by the decrease in the retinal thickness in a perifoveal zone of temporal and inferior quadrants and the reduction in the density and the amplitude of P1 in all rings.

About the authors

V. V. Neroev

Moscow Research Institute of Eye Diseases named after Helmholtz, Ministry of Health

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

E. K. Eliseeva

Moscow Research Institute of Eye Diseases named after Helmholtz, Ministry of Health

Email: platonova@neurology.ru
Russian Federation

M. V. Zueva

Moscow Research Institute of Eye Diseases named after Helmholtz, Ministry of Health

Email: platonova@neurology.ru
Russian Federation

V. S. Lysenko

Moscow Research Institute of Eye Diseases named after Helmholtz, Ministry of Health

Email: platonova@neurology.ru
Russian Federation

M. N. Zakharova

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Email: platonova@neurology.ru
Russian Federation

I. V. Tsapenko

Moscow Research Institute of Eye Diseases named after Helmholtz, Ministry of Health

Email: platonova@neurology.ru
Russian Federation

N. A. Semenova

Moscow Research Institute of Eye Diseases named after Helmholtz, Ministry of Health

Email: platonova@neurology.ru
Russian Federation

T. O. Simaniv

Research Center of Neurology, Russian Academy of Medical Sciences (Moscow)

Email: platonova@neurology.ru
Russian Federation

References

  1. Завалишин И.А., Головкин В.И. Рассеянный склероз: Избранные вопросы теории и практики. М., 2000.
  2. Нероев В.В., Зуева М.В., Цапенко И.В. и др.Нейродегенеративные изменения в сетчатке у больных ремитирующим рассеянным склерозом и ретробульбарным невритом: морфофункциональные параллели. Росс. офтальмол. журн. 2012;4: 63–68.
  3. Переседова А.В., Стойда Н.И., Аскарова Л.Ш. и др. Результаты исследования авонекса при рассеянном склерозе. Анн. клин. и эксперимент. неврол. 2010; 3: 20–24.
  4. Романова Е.В., Белозеров А.Е. Стереоскопическое зрение у больных с рассеянным склерозом. В кн.: Актуальные вопросы нейроофтальмологии: мат-лы V Моск. науч.-практ. нейроофтальмол. конф. М., 2001: 82.
  5. Шмидт Т.Е., Яхно Н.Н. Рассеянный склероз. М.: МЕД пресс-информ, 2010.
  6. Baseler H.A., Sutter E.E., Klein S.A., Carney T. The topography of visual evoked response properties across the visual field. EEG Clin. Neurophysiol. 1994; 90: 65–81.
  7. Beck R.W., Trobe J.D., Moke P.S. et al. High- and low-risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: experience of the optic neuritis treatment trial. Arch. Ophthalmol. 2003; 121: 944–949.
  8. Fraser C., Klistorner A., Graham S.L. et al. Multifocal visual evoked potential analysis of inflammatory or demyelinating optic neuritis. Ophthalmology 2006; 107: 2283–2299.
  9. Fraser C., Klistorner A., Graham S.L. et al. Multifocal visual evoked potential latency analysis: predicting progression to multiple sclerosis. Arch. Neurol. 2006; 63: 847–850.
  10. Gordon-Lipkin E., Chodkowski B., Reich D. et al. Retinal nerve fiber layer is assotiated with brain atrophy in multiple sclerosis. Neurology 2007; 69: 1603–1609.
  11. Hood D.C., Odel J.G., Zhang X. Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study. Invest. Ophthalmol. Vis. Sci. 2000; 41: 4032–4038.
  12. Hood D.C., Ohri N., Bo Yang E. et al. Determining abnormal latencies of multifocal visual evoked potentials: a monocular analysis. Doc. Ophthalmol. 2005; 109: 189–199.
  13. Klistorner A., Graham S., Fraser C. et al. Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Invest. Opthalmol. Vis. Sci. 2007; 48: 4549–4556.
  14. Klistorner A.I., Graham S.L., Grigg J.R., Billson F.A. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest. Ophthalmol. Vis. Sci.1998; 39:937–950.
  15. Lamirel C., Newman N.J., Biousse V. Optical coherence tomography (OCT) in optic neuritis and multiple sclerosis. Rev. Neurol. (Paris) 2010; 166: 978–986.
  16. Matthews В., Compston A., Ebers G. et al. Symptoms and sings of multiple sclerosis. In: McAlpine’s Multiple Sclerosis. London: Churchill Livingstone, 1998: 186–190.
  17. Ruseckaite R., Maddess T., Danta G. et al. Sparse multifocal stimuli for the detection of multiple sclerosis. Ann. Neurol. 2005; 57: 904–913.
  18. Sadovnick A.D., Ebers G.C. Epidemiology of multiple sclerosis: a critical overview. Can. J. Neurol. Sci. 1993; 20: 17–29.
  19. Saidha S., Ibrahim M.A., Eckstein C. et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134: 518–533.
  20. Saidha S., Syc S.B., Durbin M.K. et. al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult. Scler. 2011; 17: 1449–1463.
  21. Trapp B.D., Nave K.A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008; 31: 247–269.

Copyright (c) 2014 Neroev V.V., Eliseeva E.K., Zueva M.V., Lysenko V.S., Zakharova M.N., Tsapenko I.V., Semenova N.A., Simaniv T.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies